{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Simple plot of 2D data\n\nThis is an example of how to download and\nplot ceiliometer data from the SGP site\nover Oklahoma.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import os\n\nimport matplotlib.pyplot as plt\nfrom arm_test_data import DATASETS\n\nimport act\n\n# Place your username and token here\nusername = os.getenv('ARM_USERNAME')\ntoken = os.getenv('ARM_PASSWORD')\n\n# If the username and token are not set, use the existing sample file\nif username is None or token is None or len(username) == 0 or len(token) == 0:\n filename_ceil = DATASETS.fetch('sgpceilC1.b1.20190101.000000.nc')\n ceil_ds = act.io.arm.read_arm_netcdf(filename_ceil, engine='netcdf4')\nelse:\n # Example to show how easy it is to download ARM data if a username/token are set\n results = act.discovery.download_arm_data(\n username, token, 'sgpceilC1.b1', '2022-01-14', '2022-01-19'\n )\n ceil_ds = act.io.arm.read_arm_netcdf(results)\n\n# Adjust ceilometer data for plotting\nceil_ds = act.corrections.ceil.correct_ceil(ceil_ds, -9999.0)\n\n# Plot up ceilometer backscatter using HomeyerRainbow CVD friendly colormap\n# The same could be done with keyword 'cmap='HomeyerRainbow'\ndisplay = act.plotting.TimeSeriesDisplay(ceil_ds, subplot_shape=(1,), figsize=(15, 5))\ndisplay.plot('backscatter', subplot_index=(0,), cvd_friendly=True)\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.14.3" } }, "nbformat": 4, "nbformat_minor": 0 }