Plot multiple datasets#

This is an example of how to download and plot multiple datasets at a time.

  • sgpceilC1.b1 backscatter on 20190101, sgpmetE13.b1 temp_mean on 20190101
  • ceiliometer backscatter on 20190101, met temp_mean on 20190101

import matplotlib.pyplot as plt
import os

import act

# Place your username and token here
username = os.getenv('ARM_USERNAME')
token = os.getenv('ARM_PASSWORD')

# Get data from the web service if username and token are available
# if not, use test data
if username is None or token is None or len(username) == 0 or len(token) == 0:
    ceil_ds =
    met_ds =
    # Download and read data
    act.discovery.download_data(username, token, 'sgpceilC1.b1', '2019-01-01', '2019-01-07')
    ceil_ds ='sgpceilC1.b1/sgpceilC1.b1.201901*.nc')
    met_ds =

# Read in CEIL data and correct it
ceil_ds = act.corrections.ceil.correct_ceil(ceil_ds, -9999.0)

# You can use tuples if the datasets in the tuple contain a
# datastream attribute. This is required in all ARM datasets.
display = act.plotting.TimeSeriesDisplay((ceil_ds, met_ds), subplot_shape=(2,), figsize=(15, 10))
display.plot('backscatter', 'sgpceilC1.b1', subplot_index=(0,))
display.plot('temp_mean', 'sgpmetE13.b1', subplot_index=(1,))
display.day_night_background('sgpmetE13.b1', subplot_index=(1,))

# You can also use a dictionary so that you can customize
# your datastream names to something that may be more useful.
display = act.plotting.TimeSeriesDisplay(
    {'ceiliometer': ceil_ds, 'met': met_ds}, subplot_shape=(2,), figsize=(15, 10)
display.plot('backscatter', 'ceiliometer', subplot_index=(0,))
display.plot('temp_mean', 'met', subplot_index=(1,))
display.day_night_background('met', subplot_index=(1,))


Total running time of the script: ( 0 minutes 36.613 seconds)

Gallery generated by Sphinx-Gallery