"""
Utilities for reading CF/Radial files.
"""
import datetime
import getpass
import platform
import warnings
import netCDF4
import numpy as np
from ..config import FileMetadata
from .common import stringarray_to_chararray, _test_arguments
from ..core.radar import Radar
from ..lazydict import LazyLoadDict
# Variables and dimensions in the instrument_parameter convention and
# radar_parameters sub-convention that will be read from and written to
# CfRadial files using Py-ART.
# The meta_group attribute cannot be used to identify these parameters as
# it is often set incorrectly.
_INSTRUMENT_PARAMS_DIMS = {
# instrument_parameters sub-convention
'frequency': ('frequency'),
'follow_mode': ('sweep', 'string_length'),
'pulse_width': ('time', ),
'prt_mode': ('sweep', 'string_length'),
'prt': ('time', ),
'prt_ratio': ('time', ),
'polarization_mode': ('sweep', 'string_length'),
'nyquist_velocity': ('time', ),
'unambiguous_range': ('time', ),
'n_samples': ('time', ),
'sampling_ratio': ('time', ),
# radar_parameters sub-convention
'radar_antenna_gain_h': (),
'radar_antenna_gain_v': (),
'radar_beam_width_h': (),
'radar_beam_width_v': (),
'radar_receiver_bandwidth': (),
'radar_measured_transmit_power_h': ('time', ),
'radar_measured_transmit_power_v': ('time', ),
'radar_rx_bandwidth': (), # non-standard
'measured_transmit_power_v': ('time', ), # non-standard
'measured_transmit_power_h': ('time', ), # non-standard
}
[docs]def read_cfradial(filename, field_names=None, additional_metadata=None,
file_field_names=False, exclude_fields=None,
include_fields=None, delay_field_loading=False, **kwargs):
"""
Read a Cfradial netCDF file.
Parameters
----------
filename : str
Name of CF/Radial netCDF file to read data from.
field_names : dict, optional
Dictionary mapping field names in the file names to radar field names.
Unlike other read functions, fields not in this dictionary or having a
value of None are still included in the radar.fields dictionary, to
exclude them use the `exclude_fields` parameter. Fields which are
mapped by this dictionary will be renamed from key to value.
additional_metadata : dict of dicts, optional
This parameter is not used, it is included for uniformity.
file_field_names : bool, optional
True to force the use of the field names from the file in which
case the `field_names` parameter is ignored. False will use to
`field_names` parameter to rename fields.
exclude_fields : list or None, optional
List of fields to exclude from the radar object. This is applied
after the `file_field_names` and `field_names` parameters. Set
to None to include all fields specified by include_fields.
include_fields : list or None, optional
List of fields to include from the radar object. This is applied
after the `file_field_names` and `field_names` parameters. Set
to None to include all fields not specified by exclude_fields.
delay_field_loading : bool
True to delay loading of field data from the file until the 'data'
key in a particular field dictionary is accessed. In this case
the field attribute of the returned Radar object will contain
LazyLoadDict objects not dict objects. Delayed field loading will not
provide any speedup in file where the number of gates vary between
rays (ngates_vary=True) and is not recommended.
Returns
-------
radar : Radar
Radar object.
Notes
-----
This function has not been tested on "stream" Cfradial files.
"""
# test for non empty kwargs
_test_arguments(kwargs)
# create metadata retrieval object
filemetadata = FileMetadata('cfradial', field_names, additional_metadata,
file_field_names, exclude_fields)
# read the data
ncobj = netCDF4.Dataset(filename)
ncvars = ncobj.variables
# 4.1 Global attribute -> move to metadata dictionary
metadata = dict([(k, getattr(ncobj, k)) for k in ncobj.ncattrs()])
if 'n_gates_vary' in metadata:
metadata['n_gates_vary'] = 'false' # corrected below
# 4.2 Dimensions (do nothing)
# 4.3 Global variable -> move to metadata dictionary
if 'volume_number' in ncvars:
metadata['volume_number'] = int(ncvars['volume_number'][:])
else:
metadata['volume_number'] = 0
global_vars = {'platform_type': 'fixed', 'instrument_type': 'radar',
'primary_axis': 'axis_z'}
# ignore time_* global variables, these are calculated from the time
# variable when the file is written.
for var, default_value in global_vars.items():
if var in ncvars:
metadata[var] = str(netCDF4.chartostring(ncvars[var][:]))
else:
metadata[var] = default_value
# 4.4 coordinate variables -> create attribute dictionaries
time = _ncvar_to_dict(ncvars['time'])
_range = _ncvar_to_dict(ncvars['range'])
# 4.5 Ray dimension variables
# 4.6 Location variables -> create attribute dictionaries
latitude = _ncvar_to_dict(ncvars['latitude'])
longitude = _ncvar_to_dict(ncvars['longitude'])
altitude = _ncvar_to_dict(ncvars['altitude'])
if 'altitude_agl' in ncvars:
altitude_agl = _ncvar_to_dict(ncvars['altitude_agl'])
else:
altitude_agl = None
# 4.7 Sweep variables -> create atrribute dictionaries
sweep_mode = _ncvar_to_dict(ncvars['sweep_mode'])
fixed_angle = _ncvar_to_dict(ncvars['fixed_angle'])
sweep_start_ray_index = _ncvar_to_dict(ncvars['sweep_start_ray_index'])
sweep_end_ray_index = _ncvar_to_dict(ncvars['sweep_end_ray_index'])
if 'sweep_number' in ncvars:
sweep_number = _ncvar_to_dict(ncvars['sweep_number'])
else:
nsweeps = len(sweep_start_ray_index['data'])
sweep_number = filemetadata('sweep_number')
sweep_number['data'] = np.arange(nsweeps, dtype='float32')
warnings.warn("Warning: File violates CF/Radial convention. " +
"Missing sweep_number variable")
if 'target_scan_rate' in ncvars:
target_scan_rate = _ncvar_to_dict(ncvars['target_scan_rate'])
else:
target_scan_rate = None
if 'rays_are_indexed' in ncvars:
rays_are_indexed = _ncvar_to_dict(ncvars['rays_are_indexed'])
else:
rays_are_indexed = None
if 'ray_angle_res' in ncvars:
ray_angle_res = _ncvar_to_dict(ncvars['ray_angle_res'])
else:
ray_angle_res = None
# Uses ARM scan name if present.
if hasattr(ncobj, 'scan_name'):
mode = ncobj.scan_name
else:
# first sweep mode determines scan_type
try:
mode = netCDF4.chartostring(
sweep_mode['data'][0])[()].decode('utf-8')
except AttributeError:
# Python 3, all strings are already unicode.
mode = netCDF4.chartostring(sweep_mode['data'][0])[()]
mode = mode.strip()
# options specified in the CF/Radial standard
if mode == 'rhi':
scan_type = 'rhi'
elif mode == 'vertical_pointing':
scan_type = 'vpt'
elif mode == 'azimuth_surveillance':
scan_type = 'ppi'
elif mode == 'elevation_surveillance':
scan_type = 'rhi'
elif mode == 'manual_ppi':
scan_type = 'ppi'
elif mode == 'manual_rhi':
scan_type = 'rhi'
# fallback types
elif 'sur' in mode:
scan_type = 'ppi'
elif 'sec' in mode:
scan_type = 'sector'
elif 'rhi' in mode:
scan_type = 'rhi'
elif 'ppi' in mode:
scan_type = 'ppi'
else:
scan_type = 'other'
# 4.8 Sensor pointing variables -> create attribute dictionaries
azimuth = _ncvar_to_dict(ncvars['azimuth'])
elevation = _ncvar_to_dict(ncvars['elevation'])
if 'scan_rate' in ncvars:
scan_rate = _ncvar_to_dict(ncvars['scan_rate'])
else:
scan_rate = None
if 'antenna_transition' in ncvars:
antenna_transition = _ncvar_to_dict(ncvars['antenna_transition'])
else:
antenna_transition = None
# 4.9 Moving platform geo-reference variables
# Aircraft specific varaibles
if 'rotation' in ncvars:
rotation = _ncvar_to_dict(ncvars['rotation'])
else:
rotation = None
if 'tilt' in ncvars:
tilt = _ncvar_to_dict(ncvars['tilt'])
else:
tilt = None
if 'roll' in ncvars:
roll = _ncvar_to_dict(ncvars['roll'])
else:
roll = None
if 'drift' in ncvars:
drift = _ncvar_to_dict(ncvars['drift'])
else:
drift = None
if 'heading' in ncvars:
heading = _ncvar_to_dict(ncvars['heading'])
else:
heading = None
if 'pitch' in ncvars:
pitch = _ncvar_to_dict(ncvars['pitch'])
else:
pitch = None
if 'georefs_applied' in ncvars:
georefs_applied = _ncvar_to_dict(ncvars['georefs_applied'])
else:
georefs_applied = None
# 4.10 Moments field data variables -> field attribute dictionary
if 'ray_n_gates' in ncvars:
# all variables with dimensions of n_points are fields.
keys = [k for k, v in ncvars.items()
if v.dimensions == ('n_points', )]
else:
# all variables with dimensions of 'time', 'range' are fields
keys = [k for k, v in ncvars.items()
if v.dimensions == ('time', 'range')]
fields = {}
for key in keys:
field_name = filemetadata.get_field_name(key)
if field_name is None:
if exclude_fields is not None and key in exclude_fields:
if key not in include_fields:
continue
if include_fields is None or key in include_fields:
field_name = key
else:
continue
fields[field_name] = _ncvar_to_dict(ncvars[key], delay_field_loading)
if 'ray_n_gates' in ncvars:
shape = (len(ncvars['time']), len(ncvars['range']))
ray_n_gates = ncvars['ray_n_gates'][:]
ray_start_index = ncvars['ray_start_index'][:]
for dic in fields.values():
_unpack_variable_gate_field_dic(
dic, shape, ray_n_gates, ray_start_index)
# 4.5 instrument_parameters sub-convention -> instrument_parameters dict
# 4.6 radar_parameters sub-convention -> instrument_parameters dict
keys = [k for k in _INSTRUMENT_PARAMS_DIMS.keys() if k in ncvars]
instrument_parameters = dict((k, _ncvar_to_dict(ncvars[k])) for k in keys)
if instrument_parameters == {}: # if no parameters set to None
instrument_parameters = None
# 4.7 lidar_parameters sub-convention -> skip
# 4.8 radar_calibration sub-convention -> radar_calibration
keys = _find_all_meta_group_vars(ncvars, 'radar_calibration')
radar_calibration = dict((k, _ncvar_to_dict(ncvars[k])) for k in keys)
if radar_calibration == {}:
radar_calibration = None
# do not close file if field loading is delayed
if not delay_field_loading:
ncobj.close()
return Radar(
time, _range, fields, metadata, scan_type,
latitude, longitude, altitude,
sweep_number, sweep_mode, fixed_angle, sweep_start_ray_index,
sweep_end_ray_index,
azimuth, elevation,
instrument_parameters=instrument_parameters,
radar_calibration=radar_calibration,
altitude_agl=altitude_agl,
scan_rate=scan_rate,
antenna_transition=antenna_transition,
target_scan_rate=target_scan_rate,
rays_are_indexed=rays_are_indexed, ray_angle_res=ray_angle_res,
rotation=rotation, tilt=tilt, roll=roll, drift=drift, heading=heading,
pitch=pitch, georefs_applied=georefs_applied)
def _find_all_meta_group_vars(ncvars, meta_group_name):
"""
Return a list of all variables which are in a given meta_group.
"""
return [k for k, v in ncvars.items() if 'meta_group' in v.ncattrs() and
v.meta_group == meta_group_name]
def _ncvar_to_dict(ncvar, lazydict=False):
""" Convert a NetCDF Dataset variable to a dictionary. """
# copy all attribute except for scaling parameters
d = dict((k, getattr(ncvar, k)) for k in ncvar.ncattrs()
if k not in ['scale_factor', 'add_offset'])
data_extractor = _NetCDFVariableDataExtractor(ncvar)
if lazydict:
d = LazyLoadDict(d)
d.set_lazy('data', data_extractor)
else:
d['data'] = data_extractor()
return d
class _NetCDFVariableDataExtractor(object):
"""
Class facilitating on demand extraction of data from a NetCDF variable.
Parameters
----------
ncvar : netCDF4.Variable
NetCDF Variable from which data will be extracted.
"""
def __init__(self, ncvar):
""" initialize the object. """
self.ncvar = ncvar
def __call__(self):
""" Return an array containing data from the stored variable. """
data = self.ncvar[:]
if data is np.ma.masked:
# If the data is a masked scalar, MaskedConstant is returned by
# NetCDF4 version 1.2.3+. This object does not preserve the dtype
# and fill_value of the original NetCDF variable and causes issues
# in Py-ART.
# Rather we create a masked array with a single masked value
# with the correct dtype and fill_value.
self.ncvar.set_auto_mask(False)
data = np.ma.array(self.ncvar[:], mask=True)
# Use atleast_1d to force the array to be at minimum one dimensional,
# some version of netCDF return scalar or scalar arrays for scalar
# NetCDF variables.
return np.atleast_1d(data)
def _unpack_variable_gate_field_dic(
dic, shape, ray_n_gates, ray_start_index):
""" Create a 2D array from a 1D field data, dic update in place. """
fdata = dic['data']
data = np.ma.masked_all(shape, dtype=fdata.dtype)
for i, (gates, idx) in enumerate(zip(ray_n_gates, ray_start_index)):
data[i, :gates] = fdata[idx:idx+gates]
dic['data'] = data
return
[docs]def write_cfradial(filename, radar, format='NETCDF4', time_reference=None,
arm_time_variables=False):
"""
Write a Radar object to a CF/Radial compliant netCDF file.
The files produced by this routine follow the `CF/Radial standard`_.
Attempts are also made to to meet many of the standards outlined in the
`ARM Data File Standards`_.
.. _CF/Radial standard: http://www.ral.ucar.edu/projects/titan/docs/radial_formats/cfradial.html
.. _ARM Data File Standards: https://docs.google.com/document/d/1gBMw4Kje6v8LBlsrjaGFfSLoU0jRx-07TIazpthZGt0/edit?pli=1
To control how the netCDF variables are created, set any of the following
keys in the radar attribute dictionaries.
* _Zlib
* _DeflateLevel
* _Shuffle
* _Fletcher32
* _Continguous
* _ChunkSizes
* _Endianness
* _Least_significant_digit
* _FillValue
See the netCDF4 documentation for details on these settings.
Parameters
----------
filename : str
Filename to create.
radar : Radar
Radar object.
format : str, optional
NetCDF format, one of 'NETCDF4', 'NETCDF4_CLASSIC',
'NETCDF3_CLASSIC' or 'NETCDF3_64BIT'. See netCDF4 documentation for
details.
time_reference : bool
True to include a time_reference variable, False will not include
this variable. The default, None, will include the time_reference
variable when the first time value is non-zero.
arm_time_variables : bool
True to create the ARM standard time variables base_time and
time_offset, False will not create these variables.
"""
dataset = netCDF4.Dataset(filename, 'w', format=format)
# determine the maximum string length
max_str_len = len(radar.sweep_mode['data'][0])
for k in ['follow_mode', 'prt_mode', 'polarization_mode']:
if ((radar.instrument_parameters is not None) and
(k in radar.instrument_parameters)):
sdim_length = len(radar.instrument_parameters[k]['data'][0])
max_str_len = max(max_str_len, sdim_length)
str_len = max(max_str_len, 32) # minimum string legth of 32
# create time, range and sweep dimensions
dataset.createDimension('time', None)
dataset.createDimension('range', radar.ngates)
dataset.createDimension('sweep', radar.nsweeps)
dataset.createDimension('string_length', str_len)
# global attributes
# remove global variables from copy of metadata
metadata_copy = dict(radar.metadata)
global_variables = ['volume_number', 'platform_type', 'instrument_type',
'primary_axis', 'time_coverage_start',
'time_coverage_end', 'time_reference']
for var in global_variables:
if var in metadata_copy:
metadata_copy.pop(var)
# determine the history attribute if it doesn't exist, save for
# the last attribute.
if 'history' in metadata_copy:
history = metadata_copy.pop('history')
else:
user = getpass.getuser()
node = platform.node()
time_str = datetime.datetime.now().isoformat()
t = (user, node, time_str)
history = 'created by %s on %s at %s using Py-ART' % (t)
dataset.setncatts(metadata_copy)
if 'Conventions' not in dataset.ncattrs():
dataset.setncattr('Conventions', "CF/Radial")
if 'field_names' not in dataset.ncattrs():
dataset.setncattr('field_names', ', '.join(radar.fields.keys()))
# history should be the last attribute, ARM standard
dataset.setncattr('history', history)
# arm time variables base_time and time_offset if requested
if arm_time_variables:
dt = netCDF4.num2date(radar.time['data'][0], radar.time['units'],
only_use_cftime_datetimes=False,
only_use_python_datetimes=True)
td = dt - datetime.datetime.utcfromtimestamp(0)
base_time = {
'data': np.array([td.seconds + td.days * 24 * 3600], 'int32'),
'string': dt.strftime('%d-%b-%Y,%H:%M:%S GMT'),
'units': 'seconds since 1970-1-1 0:00:00 0:00',
'ancillary_variables': 'time_offset',
'long_name': 'Base time in Epoch',
}
_create_ncvar(base_time, dataset, 'base_time', ())
time_offset = {
'data': radar.time['data'],
'long_name': 'Time offset from base_time',
'units': radar.time['units'].replace('T', ' ').replace('Z', ''),
'ancillary_variables': 'time_offset',
'calendar': 'gregorian',
}
_create_ncvar(time_offset, dataset, 'time_offset', ('time', ))
# standard variables
_create_ncvar(radar.time, dataset, 'time', ('time', ))
_create_ncvar(radar.range, dataset, 'range', ('range', ))
_create_ncvar(radar.azimuth, dataset, 'azimuth', ('time', ))
_create_ncvar(radar.elevation, dataset, 'elevation', ('time', ))
# optional sensor pointing variables
if radar.scan_rate is not None:
_create_ncvar(radar.scan_rate, dataset, 'scan_rate', ('time', ))
if radar.antenna_transition is not None:
_create_ncvar(radar.antenna_transition, dataset,
'antenna_transition', ('time', ))
# fields
for field, dic in radar.fields.items():
_create_ncvar(dic, dataset, field, ('time', 'range'))
# sweep parameters
_create_ncvar(radar.sweep_number, dataset, 'sweep_number', ('sweep', ))
_create_ncvar(radar.fixed_angle, dataset, 'fixed_angle', ('sweep', ))
_create_ncvar(radar.sweep_start_ray_index, dataset,
'sweep_start_ray_index', ('sweep', ))
_create_ncvar(radar.sweep_end_ray_index, dataset,
'sweep_end_ray_index', ('sweep', ))
_create_ncvar(radar.sweep_mode, dataset, 'sweep_mode',
('sweep', 'string_length'))
if radar.target_scan_rate is not None:
_create_ncvar(radar.target_scan_rate, dataset, 'target_scan_rate',
('sweep', ))
if radar.rays_are_indexed is not None:
_create_ncvar(radar.rays_are_indexed, dataset, 'rays_are_indexed',
('sweep', 'string_length'))
if radar.ray_angle_res is not None:
_create_ncvar(radar.ray_angle_res, dataset, 'ray_angle_res',
('sweep', ))
# instrument_parameters
if ((radar.instrument_parameters is not None) and
('frequency' in radar.instrument_parameters.keys())):
size = len(radar.instrument_parameters['frequency']['data'])
dataset.createDimension('frequency', size)
if radar.instrument_parameters is not None:
for k in radar.instrument_parameters.keys():
if k in _INSTRUMENT_PARAMS_DIMS:
dim = _INSTRUMENT_PARAMS_DIMS[k]
_create_ncvar(radar.instrument_parameters[k], dataset, k, dim)
else:
# Do not try to write instrument parameter whose dimensions are
# not known, rather issue a warning and skip the parameter
message = ("Unknown instrument parameter: %s, " % (k) +
"not written to file.")
warnings.warn(message)
# radar_calibration variables
if radar.radar_calibration is not None and radar.radar_calibration != {}:
size = [len(d['data']) for k, d in radar.radar_calibration.items()
if k not in ['r_calib_index', 'r_calib_time']][0]
dataset.createDimension('r_calib', size)
for key, dic in radar.radar_calibration.items():
if key == 'r_calib_index':
dims = ('time', )
elif key == 'r_calib_time':
dims = ('r_calib', 'string_length')
else:
dims = ('r_calib', )
_create_ncvar(dic, dataset, key, dims)
# latitude, longitude, altitude, altitude_agl
if radar.latitude['data'].size == 1:
# stationary platform
_create_ncvar(radar.latitude, dataset, 'latitude', ())
_create_ncvar(radar.longitude, dataset, 'longitude', ())
_create_ncvar(radar.altitude, dataset, 'altitude', ())
if radar.altitude_agl is not None:
_create_ncvar(radar.altitude_agl, dataset, 'altitude_agl', ())
else:
# moving platform
_create_ncvar(radar.latitude, dataset, 'latitude', ('time', ))
_create_ncvar(radar.longitude, dataset, 'longitude', ('time', ))
_create_ncvar(radar.altitude, dataset, 'altitude', ('time', ))
if radar.altitude_agl is not None:
_create_ncvar(radar.altitude_agl, dataset, 'altitude_agl',
('time', ))
# time_coverage_start and time_coverage_end variables
time_dim = ('string_length', )
units = radar.time['units']
start_dt = netCDF4.num2date(
radar.time['data'][0], units, only_use_cftime_datetimes=False,
only_use_python_datetimes=True)
if start_dt.microsecond != 0:
# truncate to nearest second
start_dt -= datetime.timedelta(microseconds=start_dt.microsecond)
end_dt = netCDF4.num2date(
radar.time['data'][-1], units, only_use_cftime_datetimes=False,
only_use_python_datetimes=True)
if end_dt.microsecond != 0:
# round up to next second
end_dt += (datetime.timedelta(seconds=1) -
datetime.timedelta(microseconds=end_dt.microsecond))
start_dic = {'data': np.array(start_dt.isoformat() + 'Z', dtype='S'),
'long_name': 'UTC time of first ray in the file',
'units': 'unitless'}
end_dic = {'data': np.array(end_dt.isoformat() + 'Z', dtype='S'),
'long_name': 'UTC time of last ray in the file',
'units': 'unitless'}
_create_ncvar(start_dic, dataset, 'time_coverage_start', time_dim)
_create_ncvar(end_dic, dataset, 'time_coverage_end', time_dim)
# time_reference is required or requested.
if time_reference is None:
if radar.time['data'][0] == 0:
time_reference = False
else:
time_reference = True
if time_reference:
ref_dic = {'data': np.array(radar.time['units'][-20:], dtype='S'),
'long_name': 'UTC time reference',
'units': 'unitless'}
_create_ncvar(ref_dic, dataset, 'time_reference', time_dim)
# global variables
# volume_number, required
vol_dic = {'long_name': 'Volume number', 'units': 'unitless'}
if 'volume_number' in radar.metadata:
vol_dic['data'] = np.array([radar.metadata['volume_number']],
dtype='int32')
else:
vol_dic['data'] = np.array([0], dtype='int32')
_create_ncvar(vol_dic, dataset, 'volume_number', ())
# platform_type, optional
if 'platform_type' in radar.metadata:
dic = {'long_name': 'Platform type',
'data': np.array(radar.metadata['platform_type'], dtype='S')}
_create_ncvar(dic, dataset, 'platform_type', ('string_length', ))
# instrument_type, optional
if 'instrument_type' in radar.metadata:
dic = {'long_name': 'Instrument type',
'data': np.array(radar.metadata['instrument_type'], dtype='S')}
_create_ncvar(dic, dataset, 'instrument_type', ('string_length', ))
# primary_axis, optional
if 'primary_axis' in radar.metadata:
dic = {'long_name': 'Primary axis',
'data': np.array(radar.metadata['primary_axis'], dtype='S')}
_create_ncvar(dic, dataset, 'primary_axis', ('string_length', ))
# moving platform geo-reference variables
if radar.rotation is not None:
_create_ncvar(radar.rotation, dataset, 'rotation', ('time', ))
if radar.tilt is not None:
_create_ncvar(radar.tilt, dataset, 'tilt', ('time', ))
if radar.roll is not None:
_create_ncvar(radar.roll, dataset, 'roll', ('time', ))
if radar.drift is not None:
_create_ncvar(radar.drift, dataset, 'drift', ('time', ))
if radar.heading is not None:
_create_ncvar(radar.heading, dataset, 'heading', ('time', ))
if radar.pitch is not None:
_create_ncvar(radar.pitch, dataset, 'pitch', ('time', ))
if radar.georefs_applied is not None:
_create_ncvar(radar.georefs_applied, dataset, 'georefs_applied',
('time', ))
dataset.close()
def _create_ncvar(dic, dataset, name, dimensions):
"""
Create and fill a Variable in a netCDF Dataset object.
Parameters
----------
dic : dict
Radar dictionary to containing variable data and meta-data.
dataset : Dataset
NetCDF dataset to create variable in.
name : str
Name of variable to create.
dimension : tuple of str
Dimension of variable.
"""
# create array from list, etc.
data = dic['data']
if isinstance(data, np.ndarray) is not True:
warnings.warn("Warning, converting non-array to array:%s" % name)
data = np.array(data)
# convert string/unicode arrays to character arrays
if data.dtype.char == 'U': # cast unicode arrays to char arrays
data = data.astype('S')
if data.dtype.char == 'S' and data.dtype != 'S1':
data = stringarray_to_chararray(data)
# determine netCDF variable arguments
special_keys = {
# dictionary keys which can be used to change the default values of
# createVariable arguments, some of these map to netCDF special
# attributes, other are Py-ART conventions.
'_Zlib': 'zlib',
'_DeflateLevel': 'complevel',
'_Shuffle': 'shuffle',
'_Fletcher32': 'fletcher32',
'_Continguous': 'contiguous',
'_ChunkSizes': 'chunksizes',
'_Endianness': 'endian',
'_Least_significant_digit': 'least_significant_digit',
'_FillValue': 'fill_value',
}
kwargs = {'zlib': True} # default is to use compression
for dic_key, kwargs_key in special_keys.items():
if dic_key in dic:
kwargs[kwargs_key] = dic[dic_key]
# the _Write_as_dtype key can be used to specify the netCDF dtype
if '_Write_as_dtype' in dic:
dtype = np.dtype(dic['_Write_as_dtype'])
if np.issubdtype(dtype, np.integer):
if 'scale_factor' not in dic and 'add_offset' not in dic:
# calculate scale and offset
scale, offset, fill = _calculate_scale_and_offset(dic, dtype)
dic['scale_factor'] = scale
dic['add_offset'] = offset
dic['_FillValue'] = fill
kwargs['fill_value'] = fill
else:
dtype = data.dtype
# create the dataset variable
ncvar = dataset.createVariable(name, dtype, dimensions, **kwargs)
# long_name attribute first if present, ARM standard
if 'long_name' in dic.keys():
ncvar.setncattr('long_name', dic['long_name'])
# units attribute second if present, ARM standard
if 'units' in dic.keys():
ncvar.setncattr('units', dic['units'])
# set all attributes
for key, value in dic.items():
if key in special_keys.keys():
continue
if key in ['data', 'long_name', 'units']:
continue
ncvar.setncattr(key, value)
# set the data
if data.shape == ():
data.shape = (1,)
if data.dtype == 'S1': # string/char arrays
# KLUDGE netCDF4 version around 1.1.6 do not expand an ellipsis
# to zero dimensions (Issue #371 of netcdf4-python).
# Solution is so we treat 1 dimensional string dimensions explicitly.
if ncvar.ndim == 1:
ncvar[:data.shape[-1]] = data[:]
else:
ncvar[..., :data.shape[-1]] = data[:]
else:
ncvar[:] = data[:]
def _calculate_scale_and_offset(dic, dtype, minimum=None, maximum=None):
"""
Calculate appropriated 'scale_factor' and 'add_offset' for nc variable in
dic in order to scaling to fit dtype range.
Parameters
----------
dic : dict
Radar dictionary containing variable data and meta-data.
dtype : Numpy Dtype
Integer numpy dtype to map to.
minimum, maximum : float
Greatest and smallest values in the data, those values will be mapped
to the smallest+1 and greates values that dtype can hold.
If equal to None, numpy.amin and numpy.amax will be used on the data
contained in dic to determine these values.
"""
if "_FillValue" in dic:
fillvalue = dic["_FillValue"]
else:
fillvalue = np.NaN
data = dic['data'].copy()
data = np.ma.array(data, mask=(~np.isfinite(data) | (data == fillvalue)))
if minimum is None:
minimum = np.amin(data)
if maximum is None:
maximum = np.amax(data)
if maximum < minimum:
raise ValueError(
'Error calculating variable scaling: '
'maximum: %f is smaller than minimum: %f' % (maximum, minimum))
elif maximum == minimum:
warnings.warn(
'While calculating variable scaling: '
'maximum: %f is equal to minimum: %f' % (maximum, minimum))
maximum = minimum + 1
# get max and min scaled,
maxi = np.iinfo(dtype).max
mini = np.iinfo(dtype).min + 1 # +1 since min will serve as the fillvalue
scale = float(maximum - minimum) / float(maxi - mini)
offset = minimum - mini * scale
return scale, offset, np.iinfo(dtype).min