Source code for pyart.io.mdv_grid

"""
Utilities for reading and writing of MDV grid files.

"""


import datetime
import warnings

from netCDF4 import num2date, date2num
import numpy as np

from ..config import FileMetadata, get_fillvalue, get_metadata
from ..core.grid import Grid
from .common import make_time_unit_str, _test_arguments, prepare_for_read
from ..lazydict import LazyLoadDict
from . import mdv_common


[docs]def write_grid_mdv(filename, grid, mdv_field_names=None, field_write_order=None): """ Write grid object to MDV file. Create a MDV file containing data from the provided grid instance. The MDV file will contain parameters from the 'source' key if contained in grid.metadata. If this key or parameters related to the radar location and name are not present in the grid a default or sentinel value. will be written in the MDV file in the place of the parameter. Grid fields will be saved in float32 unless the `_Write_as_dtype` key is present. Parameters ---------- filename : str or file-like object. Filename of MDV file to create. If a file-like object is specified data will be written using the write method. grid : Grid Grid object from which to create MDV file. mdv_field_names : dict or None, optional Mapping between grid fields and MDV data type names. Field names mapped to None or with no mapping will be excluded from writing. If None, the same field names will be used. field_write_order : list or None, optional Order in which grid fields should be written out in the MDV file. None, the default, will determine a valid order automatically. Notes ----- Do to limitations of the MDV format, not all grid objects are writable. To write a grid the following conditions must be satisfied: * XY grid must be regular (equal spacing), Z can be irregular. * The number of Z levels must not exceed 122. * Fields can be encoded in the file using the '_Write_as_dtype' key specifying one of 'uint8', 'uint16' or 'float32'. Use the 'scale_factor' and 'add_offset' keys to specify scaling. Field data in the Grid object should be uncompressed, that is to say it has had the scaling applied. """ # first of all firm field list if field_write_order is None: field_write_order = list(grid.fields.keys()) # remove fields not in mdv_field_names if mdv_field_names is not None: for ifield, field in enumerate(field_write_order): if field not in mdv_field_names or mdv_field_names[field] is None: field_write_order.pop(ifield) # mount empty mdv file grid_shape = grid.fields[field_write_order[0]]['data'].shape nz, ny, nx = grid_shape nfields = len(field_write_order) if nz > mdv_common.MDV_MAX_VLEVELS: warnings.warn(('%i vlevels exceed MDV_MAX_VLEVELS = %i. Extra ' + 'levels will be ignored') % (nz, mdv_common.MDV_MAX_VLEVELS)) nz = mdv_common.MDV_MAX_VLEVELS mdv = mdv_common.MdvFile(None) mdv.field_headers = mdv._get_field_headers(nfields) mdv.vlevel_headers = mdv._get_vlevel_headers(nfields) mdv.fields_data = [None] * nfields mdv.projection = 'flat' # fill headers d = mdv.master_header grid_datetime = _time_dic_to_datetime(grid.time) mdv.times['time_centroid'] = grid_datetime mdv.times["time_begin"] = grid_datetime mdv.times["time_end"] = grid_datetime mdv._time_dict_into_header() d["data_dimension"] = 3 # XXX are grid's always 3d? # =DATA_SYNTHESIS, I don't realy know, so miscellaneous! d["data_collection_type"] = 3 if (grid.z['units'] == 'm' or grid.z['units'] == 'meters'): d["native_vlevel_type"] = 4 elif (grid.z['units'] == '\xc2' or grid.z['units'] == 'degree'): d["native_vlevel_type"] = 9 d["vlevel_type"] = d["native_vlevel_type"] d["nfields"] = nfields d["max_nx"] = nx d["max_ny"] = ny d["max_nz"] = nz td = datetime.datetime.utcnow() - datetime.datetime(1970, 1, 1, 0, 0) d["time_written"] = int( round( td.microseconds + ( td.seconds + td.days * 24 * 3600) * 10**6) / 10**6) # sensor location using radar_ attribute or origin_ if not available if grid.radar_longitude is not None and grid.nradar != 0: d["sensor_lon"] = grid.radar_longitude['data'][0] else: d["sensor_lon"] = grid.origin_longitude['data'][0] if grid.radar_latitude is not None and grid.nradar != 0: d["sensor_lat"] = grid.radar_latitude['data'][0] else: d["sensor_lat"] = grid.origin_latitude['data'][0] if grid.radar_altitude is not None and grid.nradar != 0: d["sensor_alt"] = grid.radar_altitude['data'][0] / 1000. else: d["sensor_alt"] = grid.origin_altitude['data'][0] / 1000. for meta_key, mdv_key in mdv_common.MDV_METADATA_MAP.items(): if meta_key in grid.metadata: d[mdv_key] = grid.metadata[meta_key].encode("ASCII") for ifield, field in enumerate(field_write_order): d = mdv.field_headers[ifield] l = mdv.vlevel_headers[ifield] # fill fields_header d["nx"] = nx d["ny"] = ny d["nz"] = nz d["proj_type"] = mdv_common.PROJ_FLAT try: dtype = np.dtype(grid.fields[field]['_Write_as_dtype']) except KeyError: # default to float32 encoding dtype = np.float32 if dtype == np.uint8: d["encoding_type"] = mdv_common.ENCODING_INT8 d["data_element_nbytes"] = 1 elif dtype == np.uint16: d["encoding_type"] = mdv_common.ENCODING_INT16 d["data_element_nbytes"] = 2 elif dtype == np.float32 or dtype == np.float64: d["encoding_type"] = mdv_common.ENCODING_FLOAT32 d["data_element_nbytes"] = 4 else: raise TypeError("Unsuported encoding %s, encoding must be " "uint8, uint16 or float32 as specfied by " "the '_Write_as_dtype key" % dtype) d["compression_type"] = 3 # zlib d["scaling_type"] = 4 # SCALING_SPECIFIED (by the user) d["native_vlevel_type"] = mdv.master_header["vlevel_type"] d["vlevel_type"] = mdv.master_header["vlevel_type"] d["data_dimension"] = 3 d["proj_origin_lat"] = grid.origin_latitude['data'][0] d["proj_origin_lon"] = grid.origin_longitude['data'][0] d["grid_dx"] = (grid.x['data'][1] - grid.x['data'][0]) / 1000. d["grid_dy"] = (grid.y['data'][1] - grid.y['data'][0]) / 1000. d["grid_minx"] = (grid.x['data'][0]) / 1000. d["grid_miny"] = (grid.y['data'][0]) / 1000. if "scale_factor" in grid.fields[field].keys(): d["scale"] = grid.fields[field]["scale_factor"] if "add_offset" in grid.fields[field].keys(): d["bias"] = grid.fields[field]["add_offset"] # bad_data prioritise _FillValue if "_FillValue" in grid.fields[field].keys(): d["bad_data_value"] = grid.fields[field]["_FillValue"] elif "missing_value" in grid.fields[field].keys(): d["bad_data_value"] = grid.fields[field]["missing_value"] else: d["bad_data_value"] = get_fillvalue() # missing_data prioritise missing_value if "missing_value" in grid.fields[field].keys(): d["missing_data_value"] = grid.fields[field]["missing_value"] elif "_FillValue" in grid.fields[field].keys(): d["missing_data_value"] = grid.fields[field]["_FillValue"] else: d["missing_data_value"] = get_fillvalue() d["min_value"] = np.amax(grid.fields[field]['data']) d["max_value"] = np.amin(grid.fields[field]['data']) if "standard_name" in grid.fields[field].keys(): d["field_name_long"] = ( grid.fields[field]["standard_name"].encode("ASCII")) elif "long_name" in grid.fields[field].keys(): d["field_name_long"] = ( grid.fields[field]["long_name"].encode("ASCII")) if mdv_field_names is not None: d["field_name"] = mdv_field_names[field].encode("ASCII") else: d["field_name"] = field.encode("ASCII") if "units" in grid.fields[field].keys(): d["units"] = grid.fields[field]["units"].encode("ASCII") d["transform"] = "none".encode("ASCII") # XXX not implemented # fill vlevels_header typ = [0] * 122 level = [0] * 122 for iz in range(nz): typ[iz] = d["vlevel_type"] level[iz] = grid.z["data"][iz] / 1000. l["type"] = typ l["level"] = level # put data to field mdv.fields_data[ifield] = grid.fields[field]["data"] # write the file mdv.write(filename)
[docs]def read_grid_mdv(filename, field_names=None, additional_metadata=None, file_field_names=False, exclude_fields=None, delay_field_loading=False, **kwargs): """ Read a MDV file to a Grid Object. Parameters ---------- filename : str Name of MDV file to read or file-like object pointing to the beginning of such a file. field_names : dict, optional Dictionary mapping MDV data type names to radar field names. If a data type found in the file does not appear in this dictionary or has a value of None it will not be placed in the radar.fields dictionary. A value of None, the default, will use the mapping defined in the Py-ART configuration file. additional_metadata : dict of dicts, optional Dictionary of dictionaries to retrieve metadata from during this read. This metadata is not used during any successive file reads unless explicitly included. A value of None, the default, will not introduct any addition metadata and the file specific or default metadata as specified by the Py-ART configuration file will be used. file_field_names : bool, optional True to use the MDV data type names for the field names. If this case the field_names parameter is ignored. The field dictionary will likely only have a 'data' key, unless the fields are defined in `additional_metadata`. exclude_fields : list or None, optional List of fields to exclude from the grid object. This is applied after the `file_field_names` and `field_names` parameters. delay_field_loading : bool True to delay loading of field data from the file until the 'data' key in a particular field dictionary is accessed. In this case the field attribute of the returned Radar object will contain LazyLoadDict objects not dict objects. Returns ------- grid : Grid Grid object containing data from MDV file. Notes ----- This function can only read cartesian MDV files with fields compressed with gzip or zlib. For polar files see :py:func:`pyart.io.read_mdv` MDV files and Grid object are not fully interchangeable. Specific limitation include: * All fields must have the same shape and dimensions. * All fields must have the same projection. * Vlevels types must not vary. * Projection must not be PROJ_POLAR_RADAR (9) or PROJ_RHI_RADAR (13). * Correct unit in the Z axis are just availible for 'vlevel_type' equal to VERT_TYPE_Z(4), VERT_TYPE_ELEV(9), VERT_TYPE_AZ(17), VERT_TYPE_PRESSURE(3) and VERT_TYPE_THETA(7). * The behavior in cases of 2D data is unknown but most likely will not fail. """ # test for non empty kwargs _test_arguments(kwargs) # XXX add tests for conversion limitations # create metadata retrieval object filemetadata = FileMetadata('mdv', field_names, additional_metadata, file_field_names, exclude_fields) mdv = mdv_common.MdvFile(prepare_for_read(filename)) # time dictionaries units = make_time_unit_str(mdv.times['time_begin']) time = get_metadata('grid_time') time['data'] = np.array([date2num(mdv.times['time_centroid'], units)]) time['units'] = units # origin dictionaries origin_altitude = get_metadata('origin_altitude') origin_altitude['data'] = np.array( [mdv.master_header["sensor_alt"] * 1000.], dtype='float64') origin_latitude = get_metadata('origin_latitude') origin_latitude['data'] = np.array( [mdv.master_header["sensor_lat"]], dtype='float64') origin_longitude = get_metadata('origin_longitude') origin_longitude['data'] = np.array( [mdv.master_header["sensor_lon"]], dtype='float64') # grid coordinate dictionaries nz = mdv.master_header["max_nz"] ny = mdv.master_header["max_ny"] nx = mdv.master_header["max_nx"] z_line = mdv.vlevel_headers[0]["level"][0:nz] y_start = mdv.field_headers[0]["grid_miny"] * 1000. x_start = mdv.field_headers[0]["grid_minx"] * 1000. y_step = mdv.field_headers[0]["grid_dy"] * 1000. x_step = mdv.field_headers[0]["grid_dx"] * 1000. if mdv.field_headers[0]["proj_type"] == mdv_common.PROJ_LATLON: # x and y dimensions have units of degrees xunits = 'degree_E' yunits = 'degree_N' y_start = mdv.field_headers[0]["grid_miny"] x_start = mdv.field_headers[0]["grid_minx"] y_step = mdv.field_headers[0]["grid_dy"] x_step = mdv.field_headers[0]["grid_dx"] elif (mdv.field_headers[0]["proj_type"] != mdv_common.PROJ_POLAR_RADAR and mdv.field_headers[0]["proj_type"] != mdv_common.PROJ_RHI_RADAR): xunits = 'm' yunits = 'm' if mdv.field_headers[0]["vlevel_type"] == 4: # VERT_TYPE_Z zunits = 'm' z_line = [e * 1000. for e in z_line] elif mdv.field_headers[0]["vlevel_type"] == 9: # VERT_TYPE_ELEV zunits = 'degree' # elevation elif mdv.field_headers[0]["vlevel_type"] == 17: # VERT_TYPE_AZ zunits = 'degree' # azimuth elif mdv.field_headers[0]["vlevel_type"] == 3: # VERT_TYPE_PRESSURE zunits = 'mb' elif mdv.field_headers[0]["vlevel_type"] == 7: # VERT_TYPE_THETA zunits = 'kelvin' else: warnings.warn(("While reading MDV found unexpected 'vlevel_type'" + " (%i), units in the z axis set to 'unknown'") % mdv.field_headers[0]["vlevel_type"]) zunits = 'unknown' x = get_metadata('x') x['data'] = np.linspace(x_start, x_start + x_step * (nx-1), nx) x['units'] = xunits y = get_metadata('y') y['data'] = np.linspace(y_start, y_start + y_step * (ny-1), ny) y['units'] = yunits z = get_metadata('z') z['data'] = np.array(z_line, dtype='float64') z['units'] = zunits # metadata metadata = filemetadata('metadata') for meta_key, mdv_key in mdv_common.MDV_METADATA_MAP.items(): metadata[meta_key] = mdv.master_header[mdv_key] # fields fields = {} mdv_fields = mdv._make_fields_list() for mdv_field in set(mdv_fields): field_name = filemetadata.get_field_name(mdv_field) if field_name is None: continue field_dic = filemetadata(field_name) field_dic['_FillValue'] = get_fillvalue() dataextractor = mdv_common._MdvVolumeDataExtractor( mdv, mdv.fields.index(mdv_field), get_fillvalue(), two_dims=False) if delay_field_loading: field_dic = LazyLoadDict(field_dic) field_dic.set_lazy('data', dataextractor) else: field_dic['data'] = dataextractor() fields[field_name] = field_dic if not delay_field_loading: mdv.close() return Grid(time, fields, metadata, origin_latitude, origin_longitude, origin_altitude, x, y, z)
# This function may be helpful in other cases and could be moved in common def _time_dic_to_datetime(dic): """ Return a datetime for the first element in a time dictionary. """ if 'calendar' in dic: calendar = dic['calendar'] else: calendar = 'standard' return num2date(dic['data'][0], dic['units'], calendar)