Source code for pyart.io.nexrad_cdm

"""
Functions for accessing Common Data Model (CDM) NEXRAD Level 2 files.

"""

from datetime import datetime, timedelta
import os

import netCDF4
import numpy as np

from .nexrad_common import get_nexrad_location
from ..config import FileMetadata, get_fillvalue
from ..core.radar import Radar
from .common import make_time_unit_str, _test_arguments


[docs]def read_nexrad_cdm(filename, field_names=None, additional_metadata=None, file_field_names=False, exclude_fields=None, include_fields=None, station=None, **kwargs): """ Read a Common Data Model (CDM) NEXRAD Level 2 file. Parameters ---------- filename : str File name or URL of a Common Data Model (CDM) NEXRAD Level 2 file. File of in this format can be created using the NetCDF Java Library tools [1]_. A URL of a OPeNDAP file on the UCAR THREDDS Data Server [2]_ is also accepted the netCDF4 library has been compiled with OPeNDAP support. field_names : dict, optional Dictionary mapping NEXRAD moments to radar field names. If a data type found in the file does not appear in this dictionary or has a value of None it will not be placed in the radar.fields dictionary. A value of None, the default, will use the mapping defined in the metadata configuration file. additional_metadata : dict of dicts, optional Dictionary of dictionaries to retrieve metadata from during this read. This metadata is not used during any successive file reads unless explicitly included. A value of None, the default, will not introduct any addition metadata and the file specific or default metadata as specified by the metadata configuration file will be used. file_field_names : bool, optional True to use the NEXRAD field names for the field names. If this case the field_names parameter is ignored. The field dictionary will likely only have a 'data' key, unless the fields are defined in `additional_metadata`. exclude_fields : list or None, optional List of fields to exclude from the radar object. This is applied after the `file_field_names` and `field_names` parameters. Set to None to include all fields specified by include_fields. include_fields : list or None, optional List of fields to include from the radar object. This is applied after the `file_field_names` and `field_names` parameters. Set to None to include all fields not specified by exclude_fields. station : str Four letter ICAO name of the NEXRAD station used to determine the location in the returned radar object. This parameter is only used when the location is not contained in the file, which occur in older NEXRAD files. If the location is not provided in the file and this parameter is set to None the station name will be determined from the filename. Returns ------- radar : Radar Radar object containing all moments and sweeps/cuts in the volume. Gates not collected are masked in the field data. References ---------- .. [1] http://www.unidata.ucar.edu/software/netcdf-java/documentation.htm .. [2] http://thredds.ucar.edu/thredds/catalog.html """ # test for non empty kwargs _test_arguments(kwargs) # create metadata retrieval object filemetadata = FileMetadata('nexrad_cdm', field_names, additional_metadata, file_field_names, exclude_fields, include_fields) # open the file dataset = netCDF4.Dataset(filename) dattrs = dataset.ncattrs() dvars = dataset.variables if 'cdm_data_type' not in dattrs or dataset.cdm_data_type != 'RADIAL': raise IOError('%s is not a valid CDM NetCDF file' % (filename)) # determine the scan information scan_info = _scan_info(dvars) radials_per_scan = [max(s['nradials']) for s in scan_info] ngates_per_scan = [max(s['ngates']) for s in scan_info] ngates = max(ngates_per_scan) nrays = sum(radials_per_scan) nsweeps = len(scan_info) # extract data which changes depending on scan, # specifically time, azimuth, elevation and fixed angle data, as well as # the moment data. time_data = np.empty((nrays, ), dtype='float64') azim_data = np.empty((nrays, ), dtype='float32') elev_data = np.empty((nrays, ), dtype='float32') fixed_agl_data = np.empty((nsweeps, ), dtype='float32') fdata = { 'Reflectivity': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), 'RadialVelocity': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), 'SpectrumWidth': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), 'DifferentialReflectivity': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), 'CorrelationCoefficient': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), 'DifferentialPhase': np.ma.masked_equal(np.ones((nrays, ngates), dtype='float32'), 1), } ray_i = 0 for scan_index, scan_dic in enumerate(scan_info): var_index = scan_dic['index'][0] nradials = scan_dic['nradials'][0] time_var = scan_dic['time_vars'][0] azimuth_var = scan_dic['azimuth_vars'][0] elevation_var = scan_dic['elevation_vars'][0] nradials = scan_dic['nradials'][0] end = ray_i + nradials time_data[ray_i:end] = dvars[time_var][var_index][:nradials] azim_data[ray_i:end] = dvars[azimuth_var][var_index][:nradials] elev_data[ray_i:end] = dvars[elevation_var][var_index][:nradials] fixed_agl_data[scan_index] = np.mean( dvars[elevation_var][var_index][:nradials]) for i, moment in enumerate(scan_dic['moments']): moment_index = scan_dic['index'][i] m_ngates = scan_dic['ngates'][i] m_nradials = scan_dic['nradials'][i] if moment.endswith('_HI'): fdata_name = moment[:-3] else: fdata_name = moment sweep = _get_moment_data(dvars[moment], moment_index, m_ngates) fdata[fdata_name][ray_i:ray_i + m_nradials, :m_ngates] = ( sweep[:m_nradials, :m_ngates]) ray_i += nradials # time time = filemetadata('time') first_time_var = scan_info[0]['time_vars'][0] time_start = datetime.strptime(dvars[first_time_var].units[-20:], "%Y-%m-%dT%H:%M:%SZ") time_start = time_start + timedelta(seconds=int(time_data[0]/1000)) time['data'] = time_data/1000. - int(time_data[0]/1000) time['units'] = make_time_unit_str(time_start) # range _range = filemetadata('range') max_ngates_scan_index = ngates_per_scan.index(ngates) scan_dic = scan_info[max_ngates_scan_index] max_ngates_moment_index = scan_dic['ngates'].index(ngates) distance_var = scan_dic['distance_vars'][max_ngates_moment_index] _range['data'] = dvars[distance_var][:] _range['meters_to_center_of_first_gate'] = _range['data'][0] _range['meters_between_gates'] = _range['data'][1] - _range['data'][0] # fields fields = {} for moment_name, moment_data in fdata.items(): field_name = filemetadata.get_field_name(moment_name) field_dic = filemetadata(field_name) field_dic['_FillValue'] = get_fillvalue() field_dic['data'] = moment_data fields[field_name] = field_dic # metadata metadata = filemetadata('metadata') metadata['original_container'] = 'NEXRAD Level II' # scan_type scan_type = 'ppi' # latitude, longitude, altitude latitude = filemetadata('latitude') longitude = filemetadata('longitude') altitude = filemetadata('altitude') # use the locations in the NetCDF file is available if ((hasattr(dataset, 'StationLatitude') and hasattr(dataset, 'StationLongitude') and hasattr(dataset, 'StationElevationInMeters'))): lat = dataset.StationLatitude lon = dataset.StationLongitude alt = dataset.StationElevationInMeters else: # if no locations in the file look them up from station name. if station is None: # determine the station name from the filename # this will fail in some cases, in which case station # should be implicitly provided in the function call. station = os.path.basename(filename)[:4].upper() lat, lon, alt = get_nexrad_location(station) latitude['data'] = np.array([lat], dtype='float64') longitude['data'] = np.array([lon], dtype='float64') altitude['data'] = np.array([alt], dtype='float64') # sweep_number, sweep_mode, fixed_angle, sweep_start_ray_index # sweep_end_ray_index sweep_number = filemetadata('sweep_number') sweep_mode = filemetadata('sweep_mode') sweep_start_ray_index = filemetadata('sweep_start_ray_index') sweep_end_ray_index = filemetadata('sweep_end_ray_index') sweep_number['data'] = np.arange(nsweeps, dtype='int32') sweep_mode['data'] = np.array( nsweeps * ['azimuth_surveillance'], dtype='S') rays_per_scan = list(radials_per_scan) sweep_end_ray_index['data'] = np.cumsum(rays_per_scan, dtype='int32') - 1 rays_per_scan.insert(0, 0) sweep_start_ray_index['data'] = np.cumsum(rays_per_scan[:-1], dtype='int32') # azimuth, elevation, fixed_angle azimuth = filemetadata('azimuth') elevation = filemetadata('elevation') fixed_angle = filemetadata('fixed_angle') azimuth['data'] = azim_data elevation['data'] = elev_data fixed_angle['data'] = fixed_agl_data dataset.close() return Radar( time, _range, fields, metadata, scan_type, latitude, longitude, altitude, sweep_number, sweep_mode, fixed_angle, sweep_start_ray_index, sweep_end_ray_index, azimuth, elevation, instrument_parameters=None)
def _scan_info(dvars): """ Return a list of information on the scans in the volume. """ # determine the time of the sweep start time_variables = [k for k in dvars.keys() if k.startswith('time')] scan_start_times = set([]) for var in time_variables: for time in dvars[var][:, 0]: scan_start_times.add(time) scan_start_times = list(scan_start_times) scan_start_times.sort() # build the scan_info list time_var_to_moment = { # time variable to moment conversion 'timeR': 'Reflectivity', 'timeV': 'RadialVelocity', 'timeD': 'DifferentialReflectivity', 'timeC': 'CorrelationCoefficient', 'timeP': 'DifferentialPhase', 'timeR_HI': 'Reflectivity_HI', 'timeV_HI': 'RadialVelocity_HI', 'timeD_HI': 'DifferentialReflectivity_HI', 'timeC_HI': 'CorrelationCoefficient_HI', 'timeP_HI': 'DifferentialPhase_HI', } scan_info = [{'start_time': t, 'time_vars': [], 'moments': [], 'nradials': [], 'ngates': [], 'elevation_vars': [], 'azimuth_vars': [], 'distance_vars': [], 'index': []} for t in scan_start_times] for time_var in time_variables: for time_var_i, time in enumerate(dvars[time_var][:, 0]): scan_index = scan_start_times.index(time) scan_dic = scan_info[scan_index] moment = time_var_to_moment[time_var] _populate_scan_dic(scan_dic, time_var, time_var_i, moment, dvars) # corner cases, timeV is a dimension for RadialVelocity AND # SpectrumWidth if time_var == 'timeV': _populate_scan_dic(scan_dic, time_var, time_var_i, 'SpectrumWidth', dvars) if time_var == 'timeV_HI': _populate_scan_dic(scan_dic, time_var, time_var_i, 'SpectrumWidth_HI', dvars) return scan_info def _populate_scan_dic(scan_dic, time_var, time_var_i, moment, dvars): """ Populate a dictionary in the scan_info list. """ if time_var.endswith('HI'): var_suffix = time_var[-4:] else: var_suffix = time_var[-1:] ngates = dvars['numGates' + var_suffix][time_var_i] nradials = dvars['numRadials' + var_suffix][time_var_i] scan_dic['time_vars'].append(time_var) scan_dic['index'].append(time_var_i) scan_dic['moments'].append(moment) scan_dic['elevation_vars'].append('elevation' + var_suffix) scan_dic['azimuth_vars'].append('azimuth' + var_suffix) scan_dic['distance_vars'].append('distance' + var_suffix) scan_dic['ngates'].append(ngates) scan_dic['nradials'].append(nradials) return def _get_moment_data(moment_var, index, ngates): """ Retieve moment data for a given scan. """ # mask, scale and offset moment_var.set_auto_maskandscale(False) raw_moment_data = moment_var[index][:, :ngates] if '_Unsigned' in moment_var.ncattrs(): if raw_moment_data.dtype == np.int8: raw_moment_data = raw_moment_data.view('uint8') if raw_moment_data.dtype == np.int16: raw_moment_data = raw_moment_data.view('uint16') raw_moment_data = np.ma.masked_less_equal(raw_moment_data, 1) if 'scale_factor' in moment_var.ncattrs(): scale = moment_var.scale_factor else: scale = 1.0 if 'add_offset' in moment_var.ncattrs(): add_offset = moment_var.add_offset else: add_offset = 0.0 return raw_moment_data * scale + add_offset