Source code for pyart.testing.sample_objects

"""
Functions for creating sample Radar and Grid objects.

"""

import numpy as np
import scipy

from .sample_files import _EXAMPLE_RAYS_FILE
from ..config import get_metadata
from ..core.radar import Radar
from ..core.grid import Grid
from ..exceptions import MissingOptionalDependency

try:
    import xarray as xr
    from ..core.radar_spectra import RadarSpectra
    _XARRAY_AVAILABLE = True
except ImportError:
    _XARRAY_AVAILABLE = False



[docs]def make_empty_ppi_radar(ngates, rays_per_sweep, nsweeps): """ Return an Radar object, representing a PPI scan. Parameters ---------- ngates : int Number of gates per ray. rays_per_sweep : int Number of rays in each PPI sweep. nsweeps : int Number of sweeps. Returns ------- radar : Radar Radar object with no fields, other parameters are set to default values. """ nrays = rays_per_sweep * nsweeps time = get_metadata('time') _range = get_metadata('range') latitude = get_metadata('latitude') longitude = get_metadata('longitude') altitude = get_metadata('altitude') sweep_number = get_metadata('sweep_number') sweep_mode = get_metadata('sweep_mode') fixed_angle = get_metadata('fixed_angle') sweep_start_ray_index = get_metadata('sweep_start_ray_index') sweep_end_ray_index = get_metadata('sweep_end_ray_index') azimuth = get_metadata('azimuth') elevation = get_metadata('elevation') fields = {} scan_type = 'ppi' metadata = {'instrument_name': 'fake_radar'} time['data'] = np.arange(nrays, dtype='float64') time['units'] = 'seconds since 1989-01-01T00:00:01Z' _range['data'] = np.linspace(0, 1000, ngates).astype('float32') latitude['data'] = np.array([36.5], dtype='float64') longitude['data'] = np.array([-97.5], dtype='float64') altitude['data'] = np.array([200], dtype='float64') sweep_number['data'] = np.arange(nsweeps, dtype='int32') sweep_mode['data'] = np.array(['azimuth_surveillance'] * nsweeps) fixed_angle['data'] = np.array([0.75] * nsweeps, dtype='float32') sweep_start_ray_index['data'] = np.arange(0, nrays, rays_per_sweep, dtype='int32') sweep_end_ray_index['data'] = np.arange(rays_per_sweep - 1, nrays, rays_per_sweep, dtype='int32') azimuth['data'] = np.arange(nrays, dtype='float32') elevation['data'] = np.array([0.75] * nrays, dtype='float32') return Radar(time, _range, fields, metadata, scan_type, latitude, longitude, altitude, sweep_number, sweep_mode, fixed_angle, sweep_start_ray_index, sweep_end_ray_index, azimuth, elevation, instrument_parameters=None)
[docs]def make_empty_rhi_radar(ngates, rays_per_sweep, nsweeps): """ Return an Radar object, representing a RHI scan. Parameters ---------- ngates : int Number of gates per ray. rays_per_sweep : int Number of rays in each PPI sweep. nsweeps : int Number of sweeps. Returns ------- radar : Radar Radar object with no fields, other parameters are set to default values. """ radar = make_empty_ppi_radar(ngates, rays_per_sweep, nsweeps) radar.scan_type = 'rhi' nrays = rays_per_sweep * nsweeps radar.sweep_mode['data'] = np.array(['rhi'] * nsweeps) radar.elevation['data'] = np.arange(nrays, dtype='float32') radar.azimuth['data'] = np.array([0.75] * nrays, dtype='float32') return radar
[docs]def make_target_radar(): """ Return a PPI radar with a target like reflectivity field. """ radar = make_empty_ppi_radar(50, 360, 1) fields = { 'reflectivity': get_metadata('reflectivity')} fdata = np.zeros((360, 50), dtype='float32') fdata[:, 0:10] = 0. fdata[:, 10:20] = 10. fdata[:, 20:30] = 20. fdata[:, 30:40] = 30. fdata[:, 40:50] = 40. fields['reflectivity']['data'] = fdata radar.fields = fields return radar
[docs]def make_velocity_aliased_radar(alias=True): """ Return a PPI radar with a target like reflectivity field. Set alias to False to return a de-aliased radar. """ radar = make_empty_ppi_radar(50, 360, 1) radar.range['meters_between_gates'] = 1.0 radar.range['meters_to_center_of_first_gate'] = 1.0 radar.instrument_parameters = { 'nyquist_velocity': {'data': np.array([10.0] * 360)}} fields = { 'reflectivity': get_metadata('reflectivity'), 'velocity': get_metadata('velocity')} # fake reflectivity data, all zero reflectivity fdata = np.zeros((360, 50), dtype='float32') fields['reflectivity']['data'] = fdata # fake velocity data, all zeros except a wind burst on at ~13 degrees. # burst is partially aliased. vdata = np.zeros((360 * 1, 50), dtype='float32') for i, idx in enumerate(range(13, -1, -1)): vdata[i, idx:idx + i + 1] = np.arange(0.5, 0.5 + i * 1. + 0.001) vdata[:14, 14:27] = vdata[:14, 12::-1] # left/right flip vdata[14:27] = vdata[12::-1, :] # top/bottom flip aliased = np.where(vdata > 10.0) if alias: vdata[aliased] += -20. fields['velocity']['data'] = vdata radar.fields = fields return radar
[docs]def make_velocity_aliased_rhi_radar(alias=True): """ Return a RHI radar with a target like reflectivity field. Set alias to False to return a de-aliased radar. """ radar = make_empty_rhi_radar(50, 180, 1) radar.range['meters_between_gates'] = 1.0 radar.range['meters_to_center_of_first_gate'] = 1.0 radar.instrument_parameters = { 'nyquist_velocity': {'data': np.array([10.0] * 360)}} fields = { 'reflectivity': get_metadata('reflectivity'), 'velocity': get_metadata('velocity')} # fake reflectivity data, all zero reflectivity fdata = np.zeros((180, 50), dtype='float32') fields['reflectivity']['data'] = fdata # fake velocity data, all zeros except a wind burst on at ~13 degrees. # burst is partially aliased. vdata = np.zeros((180 * 1, 50), dtype='float32') for i, idx in enumerate(range(13, -1, -1)): vdata[i, idx:idx + i + 1] = np.arange(0.5, 0.5 + i * 1. + 0.001) vdata[:14, 14:27] = vdata[:14, 12::-1] # left/right flip vdata[14:27] = vdata[12::-1, :] # top/bottom flip aliased = np.where(vdata > 10.0) if alias: vdata[aliased] += -20. fields['velocity']['data'] = vdata radar.fields = fields return radar
[docs]def make_single_ray_radar(): """ Return a PPI radar with a single ray taken from a ARM C-SAPR Radar. Radar object returned has 'reflectivity_horizontal', 'norm_coherent_power', 'copol_coeff', 'dp_phase_shift', 'diff_phase', and 'differential_reflectivity' fields with no metadata but a 'data' key. This radar is used for unit tests in correct modules. """ radar = make_empty_ppi_radar(983, 1, 1) radar.range['data'] = 117.8784 + np.arange(983) * 119.91698 f = np.load(_EXAMPLE_RAYS_FILE) for field_name in f: radar.fields[field_name] = {'data': f[field_name]} f.close() return radar
[docs]def make_empty_grid(grid_shape, grid_limits): """ Make an empty grid object without any fields or metadata. Parameters ---------- grid_shape : 3-tuple of floats Number of points in the grid (z, y, x). grid_limits : 3-tuple of 2-tuples Minimum and maximum grid location (inclusive) in meters for the z, y, x coordinates. Returns ------- grid : Grid Empty Grid object, centered near the ARM SGP site (Oklahoma). """ time = get_metadata('grid_time') time['data'] = np.array([0.0]) time['units'] = 'seconds since 2000-01-01T00:00:00Z' # grid coordinate dictionaries nz, ny, nx = grid_shape (z0, z1), (y0, y1), (x0, x1) = grid_limits x = get_metadata('x') x['data'] = np.linspace(x0, x1, nx) y = get_metadata('y') y['data'] = np.linspace(y0, y1, ny) z = get_metadata('z') z['data'] = np.linspace(z0, z1, nz) origin_altitude = get_metadata('origin_altitude') origin_altitude['data'] = np.array([300.]) origin_latitude = get_metadata('origin_latitude') origin_latitude['data'] = np.array([36.74]) origin_longitude = get_metadata('origin_longitude') origin_longitude['data'] = np.array([-98.1]) fields = {} metadata = {} radar_latitude = get_metadata('radar_latitude') radar_latitude['data'] = np.array([36.74]) radar_longitude = get_metadata('radar_longitude') radar_longitude['data'] = np.array([-98.1]) radar_altitude = get_metadata('radar_altitude') radar_altitude['data'] = np.array([300.]) radar_time = get_metadata('radar_time') radar_time['data'] = np.array([0.0]) radar_time['units'] = 'seconds since 2000-01-01T00:00:00Z' radar_name = get_metadata('radar_name') radar_name['data'] = np.array(['ExampleRadar']) return Grid(time, fields, metadata, origin_latitude, origin_longitude, origin_altitude, x, y, z, radar_latitude=radar_latitude, radar_longitude=radar_longitude, radar_altitude=radar_altitude, radar_time=radar_time, radar_name=radar_name)
[docs]def make_target_grid(): """ Make a sample Grid with a rectangular target. """ grid_shape = (2, 400, 320) grid_limits = ((0, 500), (-400000, 400000), (-300000, 300000)) grid = make_empty_grid(grid_shape, grid_limits) fdata = np.zeros((2, 400, 320), dtype='float32') fdata[:, 50:-50, 40:-40] = 10. fdata[:, 100:-100, 80:-80] = 20. fdata[:, 150:-150, 120:-120] = 30. fdata[1] += 5 rdic = { 'data': fdata, 'long_name': 'reflectivity', 'units': 'dBz'} grid.fields = {'reflectivity': rdic} return grid
[docs]def make_storm_grid(): """ Make a sample Grid with a rectangular storm target. """ grid_shape = (2, 50, 40) grid_limits = ((0, 500), (-400000, 400000), (-300000, 300000)) grid = make_empty_grid(grid_shape, grid_limits) fdata = np.ma.zeros((2, 50, 40), dtype='float32') fdata[:] = np.ma.masked fdata[:, 5:-5, 4:-4] = 20. fdata[:, 10:-10, 8:-8] = 30. fdata[:, 15:-15, 12:-12] = 60. fdata[1] += 5 rdic = { 'data': fdata, 'long_name': 'reflectivity', 'units': 'dBz'} grid.fields = {'reflectivity': rdic} return grid
[docs]def make_normal_storm(sigma, mu): """ Make a sample Grid with a gaussian storm target. """ test_grid = make_empty_grid( [1, 101, 101], [(1, 1), (-50, 50), (-50, 50)]) x = test_grid.x['data'] y = test_grid.y['data'] z = test_grid.z['data'] zg, yg, xg = np.meshgrid(z, y, x, indexing='ij') r = np.sqrt((xg - mu[0])**2 + (yg - mu[1])**2) term1 = 1.0 / (sigma * np.sqrt(2.0 * np.pi)) term2 = -1.0 * (r**2 / (2.0 * sigma**2)) data = term1 * np.exp(term2) rdic = { 'data': data, 'long_name': 'reflectivity', 'units': 'dBz'} test_grid.fields.update({'reflectivity': rdic}) return test_grid
[docs]def make_empty_spectra_radar(nrays, ngates, npulses_max): """ Return a Spectra Radar object. Parameters ---------- nrays : int Number of rays in the object. ngates : int Number of gates per ray. npulses_max : int Number of pulses in each gate. Returns ------- radar : RadarSpectra Radar spectra object with an empty spectra field, other parameters are set to default values. """ if not _XARRAY_AVAILABLE: raise MissingOptionalDependency( "Xarray is required to use make_empty_spectra_radar " "but is not installed!") time_dict = get_metadata('time') _range_dict = get_metadata('range') latitude_dict = get_metadata('latitude') longitude_dict = get_metadata('longitude') altitude_dict = get_metadata('altitude') sweep_number_dict = get_metadata('sweep_number') sweep_mode_dict = get_metadata('sweep_mode') fixed_angle_dict = get_metadata('fixed_angle') sweep_start_ray_index_dict = get_metadata('sweep_start_ray_index') sweep_end_ray_index_dict = get_metadata('sweep_end_ray_index') azimuth_dict = get_metadata('azimuth') elevation_dict = get_metadata('elevation') fields = {} scan_type = 'vpt' c = 299792458 wavelength = c/34.830*1e-9 metadata = {'instrument_name': 'fake_spectra_radar', 'wavelength': wavelength} time_dict['units'] = 'seconds since 1989-01-01T00:00:01Z' time = xr.DataArray(np.arange(nrays, dtype='float32'), attrs=time_dict, dims='time') _range = xr.DataArray(np.linspace(0, 1000, ngates).astype('float32'), attrs=_range_dict, dims='range') latitude = xr.DataArray(np.array([36.5], dtype='float64'), attrs=latitude_dict) longitude = xr.DataArray(np.array([-97.5], dtype='float64'), attrs=longitude_dict) altitude = xr.DataArray(np.array([200], dtype='float64'), attrs=altitude_dict) sweep_number = xr.DataArray(np.arange(1, dtype='int32'), attrs=sweep_number_dict) sweep_mode = xr.DataArray(np.array(['spectra'] * 1), attrs=sweep_mode_dict) fixed_angle = xr.DataArray(np.array([0.75] * 1, dtype='float32'), attrs=fixed_angle_dict) sweep_start_ray_index = xr.DataArray(np.array([0], dtype='int32'), attrs=sweep_start_ray_index_dict) sweep_end_ray_index = xr.DataArray( np.array([len(time.values)-1], dtype='int32'), attrs=sweep_end_ray_index_dict) azimuth = xr.DataArray(np.arange(nrays, dtype='float32'), attrs=azimuth_dict, dims='time') elevation = xr.DataArray(np.array([0.75] * nrays, dtype='float32'), attrs=elevation_dict, dims='time') npulses_max = np.arange(npulses_max, dtype='float32') velocity_bins = xr.DataArray(np.linspace(-10.0, 10.0, len(npulses_max)), attrs={}, dims='npulses_max') fields = np.zeros( (len(time.values), len(_range.values), len(npulses_max))) return RadarSpectra(time, _range, fields, metadata, scan_type, latitude, longitude, altitude, sweep_number, sweep_mode, fixed_angle, sweep_start_ray_index, sweep_end_ray_index, azimuth, elevation, npulses_max, velocity_bins, instrument_parameters=None)
[docs]def make_target_spectra_radar(): """ Return a spectra radar with a target like spectra field. """ if not _XARRAY_AVAILABLE: raise MissingOptionalDependency( "Xarray is required to use make_target_spectra_radar " "but is not installed!") radar = make_empty_spectra_radar(10, 20, 50) fdata = np.zeros((10, 20, 50), dtype='float32') max_value = 10**(-10/10) fdata[:, :, :] = 10*np.log10(scipy.signal.gaussian(50, std=7) * max_value) radar.ds['spectra'].values = fdata return radar