pyart.retrieve.hydroclass_semisupervised¶
- pyart.retrieve.hydroclass_semisupervised(radar, mass_centers=None, weights=array([1., 1., 1., 0.75, 0.5]), refl_field=None, zdr_field=None, rhv_field=None, kdp_field=None, temp_field=None, hydro_field=None)[source]¶
Classifies precipitation echoes following the approach by Besic et al (2016).
- Parameters
radar (radar) – Radar object.
mass_centers (ndarray 2D, optional) – The centroids for each variable and hydrometeor class in (nclasses, nvariables).
weights (ndarray 1D, optional) – The weight given to each variable.
refl_field, zdr_field, rhv_field, kdp_field, temp_field (str, optional) – Inputs. Field names within the radar object which represent the horizonal reflectivity, the differential reflectivity, the copolar correlation coefficient, the specific differential phase and the temperature field. A value of None for any of these parameters will use the default field name as defined in the Py-ART configuration file.
hydro_field (str, optional) – Output. Field name which represents the hydrometeor class field. A value of None will use the default field name as defined in the Py-ART configuration file.
- Returns
hydro (dict) – Hydrometeor classification field.
References
Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425-4445, doi:10.5194/amt-9-4425-2016, 2016