Source code for pyart.retrieve.echo_class

"""
Functions for echo classification.

"""

import numpy as np

from ..config import get_fillvalue, get_field_name, get_metadata
from ..exceptions import MissingOptionalDependency
from ._echo_class import steiner_class_buff

from warnings import warn


[docs]def steiner_conv_strat(grid, dx=None, dy=None, intense=42.0, work_level=3000.0, peak_relation='default', area_relation='medium', bkg_rad=11000.0, use_intense=True, fill_value=None, refl_field=None): """ Partition reflectivity into convective-stratiform using the Steiner et al. (1995) algorithm. Parameters ---------- grid : Grid Grid containing reflectivity field to partition. dx, dy : float, optional The x- and y-dimension resolutions in meters, respectively. If None the resolution is determined from the first two axes values. intense : float, optional The intensity value in dBZ. Grid points with a reflectivity value greater or equal to the intensity are automatically flagged as convective. See reference for more information. work_level : float, optional The working level (separation altitude) in meters. This is the height at which the partitioning will be done, and should minimize bright band contamination. See reference for more information. peak_relation : 'default' or 'sgp', optional The peakedness relation. See reference for more information. area_relation : 'small', 'medium', 'large', or 'sgp', optional The convective area relation. See reference for more information. bkg_rad : float, optional The background radius in meters. See reference for more information. use_intense : bool, optional True to use the intensity criteria. fill_value : float, optional Missing value used to signify bad data points. A value of None will use the default fill value as defined in the Py-ART configuration file. refl_field : str, optional Field in grid to use as the reflectivity during partitioning. None will use the default reflectivity field name from the Py-ART configuration file. Returns ------- eclass : dict Steiner convective-stratiform classification dictionary. References ---------- Steiner, M. R., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. J. Appl. Meteor., 34, 1978-2007. """ # Get fill value if fill_value is None: fill_value = get_fillvalue() # Parse field parameters if refl_field is None: refl_field = get_field_name('reflectivity') # parse dx and dy if dx is None: dx = grid.x['data'][1] - grid.x['data'][0] if dy is None: dy = grid.y['data'][1] - grid.y['data'][0] # Get coordinates x = grid.x['data'] y = grid.y['data'] z = grid.z['data'] # Get reflectivity data ze = np.ma.copy(grid.fields[refl_field]['data']) ze = ze.filled(np.NaN) eclass = steiner_class_buff(ze, x, y, z, dx=dx, dy=dy, bkg_rad=bkg_rad, work_level=work_level, intense=intense, peak_relation=peak_relation, area_relation=area_relation, use_intense=use_intense,) return {'data': eclass.astype(np.int32), 'standard_name': 'echo_classification', 'long_name': 'Steiner echo classification', 'valid_min': 0, 'valid_max': 2, 'comment_1': ('Convective-stratiform echo ' 'classification based on ' 'Steiner et al. (1995)'), 'comment_2': ('0 = Undefined, 1 = Stratiform, ' '2 = Convective')}
[docs]def hydroclass_semisupervised(radar, mass_centers=None, weights=np.array([1., 1., 1., 0.75, 0.5]), refl_field=None, zdr_field=None, rhv_field=None, kdp_field=None, temp_field=None, hydro_field=None): """ Classifies precipitation echoes following the approach by Besic et al (2016). Parameters ---------- radar : radar Radar object. mass_centers : ndarray 2D, optional The centroids for each variable and hydrometeor class in (nclasses, nvariables). weights : ndarray 1D, optional The weight given to each variable. refl_field, zdr_field, rhv_field, kdp_field, temp_field : str, optional Inputs. Field names within the radar object which represent the horizonal reflectivity, the differential reflectivity, the copolar correlation coefficient, the specific differential phase and the temperature field. A value of None for any of these parameters will use the default field name as defined in the Py-ART configuration file. hydro_field : str, optional Output. Field name which represents the hydrometeor class field. A value of None will use the default field name as defined in the Py-ART configuration file. Returns ------- hydro : dict Hydrometeor classification field. References ---------- Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425-4445, doi:10.5194/amt-9-4425-2016, 2016 """ lapse_rate = -6.5 # select the centroids as a function of frequency band if mass_centers is None: # assign coefficients according to radar frequency if 'frequency' in radar.instrument_parameters: mass_centers = _get_mass_centers( radar.instrument_parameters['frequency']['data'][0]) else: mass_centers = _mass_centers_table()['C'] warn('Radar frequency unknown. ' + 'Default coefficients for C band will be applied') # parse the field parameters if refl_field is None: refl_field = get_field_name('reflectivity') if zdr_field is None: zdr_field = get_field_name('differential_reflectivity') if rhv_field is None: rhv_field = get_field_name('cross_correlation_ratio') if kdp_field is None: kdp_field = get_field_name('specific_differential_phase') if temp_field is None: temp_field = get_field_name('temperature') if hydro_field is None: hydro_field = get_field_name('radar_echo_classification') # extract fields and parameters from radar radar.check_field_exists(refl_field) radar.check_field_exists(zdr_field) radar.check_field_exists(rhv_field) radar.check_field_exists(kdp_field) radar.check_field_exists(temp_field) refl = radar.fields[refl_field]['data'] zdr = radar.fields[zdr_field]['data'] rhohv = radar.fields[rhv_field]['data'] kdp = radar.fields[kdp_field]['data'] temp = radar.fields[temp_field]['data'] # convert temp in relative height respect to iso0 relh = temp*(1000./lapse_rate) # standardize data refl_std = _standardize(refl, 'Zh') zdr_std = _standardize(zdr, 'ZDR') kdp_std = _standardize(kdp, 'KDP') rhohv_std = _standardize(rhohv, 'RhoHV') relh_std = _standardize(relh, 'relH') # standardize centroids mc_std = np.zeros(np.shape(mass_centers)) mc_std[:, 0] = _standardize(mass_centers[:, 0], 'Zh') mc_std[:, 1] = _standardize(mass_centers[:, 1], 'ZDR') mc_std[:, 2] = _standardize(mass_centers[:, 2], 'KDP') mc_std[:, 3] = _standardize(mass_centers[:, 3], 'RhoHV') mc_std[:, 4] = _standardize(mass_centers[:, 4], 'relH') # assign to class hydroclass_data, min_dist = _assign_to_class( refl_std, zdr_std, kdp_std, rhohv_std, relh_std, mc_std, weights=weights) # prepare output fields hydro = get_metadata(hydro_field) hydro['data'] = hydroclass_data return hydro
def _standardize(data, field_name, mx=None, mn=None): """ Streches the radar data to -1 to 1 interval. Parameters ---------- data : array Radar field. field_name : str Type of field (relH, Zh, ZDR, KDP or RhoHV). mx, mn : floats or None, optional Data limits for array values. Returns ------- field_std : dict Standardized radar data. """ if field_name == 'relH': field_std = 2./(1.+np.ma.exp(-0.005*data))-1. return field_std if (mx is None) or (mn is None): dlimits_dict = _data_limits_table() if field_name not in dlimits_dict: raise ValueError( 'Field ' + field_name + ' unknown. ' + 'Valid field names for standardizing are: ' + 'relH, Zh, ZDR, KDP and RhoHV') mx, mn = dlimits_dict[field_name] if field_name == 'KDP': data[data < -0.5] = -0.5 data = 10.*np.ma.log10(data+0.6) elif field_name == 'RhoHV': data = 10.*np.ma.log10(1.-data) mask = np.ma.getmaskarray(data) field_std = 2.*(data-mn)/(mx-mn)-1. field_std[data < mn] = -1. field_std[data > mx] = 1. field_std[mask] = np.ma.masked return field_std def _assign_to_class(zh, zdr, kdp, rhohv, relh, mass_centers, weights=np.array([1., 1., 1., 0.75, 0.5])): """ Assigns an hydrometeor class to a radar range bin computing the distance between the radar variables an a centroid. Parameters ---------- zh, zdr, kdp, rhohv, relh : radar fields Variables used for assignment normalized to [-1, 1] values. mass_centers : matrix Centroids normalized to [-1, 1] values. weights : array, optional The weight given to each variable. Returns ------- hydroclass : int array The index corresponding to the assigned class. mind_dist : float array The minimum distance to the centroids. """ # prepare data nrays = zh.shape[0] nbins = zdr.shape[1] nclasses = mass_centers.shape[0] nvariables = mass_centers.shape[1] data = np.ma.array([zh, zdr, kdp, rhohv, relh]) weights_mat = np.broadcast_to( weights.reshape(nvariables, 1, 1), (nvariables, nrays, nbins)) dist = np.ma.zeros((nclasses, nrays, nbins), dtype='float64') # compute distance: masked entries will not contribute to the distance for i in range(nclasses): centroids_class = mass_centers[i, :] centroids_class = np.broadcast_to( centroids_class.reshape(nvariables, 1, 1), (nvariables, nrays, nbins)) dist[i, :, :] = np.ma.sqrt(np.ma.sum( ((centroids_class-data)**2.)*weights_mat, axis=0)) # use very large fill_value so that masked entries will be sorted at the # end. There should not be any masked entry anyway class_vec = dist.argsort(axis=0, fill_value=10e40) # get minimum distance. Acts as a confidence value dist_sorted = dist.sort(axis=0, fill_value=10e40) min_dist = dist[0, :, :] # Entries with non-valid reflectivity values are set to 0 (No class) mask = np.ma.getmaskarray(zh) hydroclass = class_vec[0, :, :]+1 hydroclass[mask] = 0 return hydroclass, min_dist def _get_mass_centers(freq): """ Get mass centers for a particular frequency. Parameters ---------- freq : float Radar frequency [Hz]. Returns ------- mass_centers : ndarray 2D The centroids for each variable and hydrometeor class in (nclasses, nvariables). """ mass_centers_dict = _mass_centers_table() freq_band = get_freq_band(freq) if (freq_band is not None) and (freq_band in mass_centers_dict): return mass_centers_dict[freq_band] if freq < 4e9: freq_band_aux = 'C' elif freq > 12e9: freq_band_aux = 'X' mass_centers = mass_centers_dict[freq_band_aux] warn('Radar frequency out of range. ' + 'Centroids only valid for C or X band. ' + freq_band_aux + ' band centroids will be applied') return mass_centers def _mass_centers_table(): """ Defines the mass centers look up table for each frequency band. Returns ------- mass_centers_dict : dict A dictionary with the mass centers for each frequency band. """ nclasses = 9 nvariables = 5 mass_centers = np.zeros((nclasses, nvariables)) mass_centers_dict = dict() # C-band centroids derived for MeteoSwiss Albis radar # Zh ZDR kdp RhoHV delta_Z mass_centers[0, :] = [13.5829, 0.4063, 0.0497, 0.9868, 1330.3] # DS mass_centers[1, :] = [02.8453, 0.2457, 0.0000, 0.9798, 0653.8] # CR mass_centers[2, :] = [07.6597, 0.2180, 0.0019, 0.9799, -1426.5] # LR mass_centers[3, :] = [31.6815, 0.3926, 0.0828, 0.9978, 0535.3] # GR mass_centers[4, :] = [39.4703, 1.0734, 0.4919, 0.9876, -1036.3] # RN mass_centers[5, :] = [04.8267, -0.5690, 0.0000, 0.9691, 0869.8] # VI mass_centers[6, :] = [30.8613, 0.9819, 0.1998, 0.9845, -0066.1] # WS mass_centers[7, :] = [52.3969, 2.1094, 2.4675, 0.9730, -1550.2] # MH mass_centers[8, :] = [50.6186, -0.0649, 0.0946, 0.9904, 1179.9] # IH/HDG mass_centers_dict.update({'C': mass_centers}) # X-band centroids derived for MeteoSwiss DX50 radar # Zh ZDR kdp RhoHV delta_Z mass_centers[0, :] = [19.0770, 0.4139, 0.0099, 0.9841, 1061.7] # DS mass_centers[1, :] = [03.9877, 0.5040, 0.0000, 0.9642, 0856.6] # CR mass_centers[2, :] = [20.7982, 0.3177, 0.0004, 0.9858, -1375.1] # LR mass_centers[3, :] = [34.7124, -0.3748, 0.0988, 0.9828, 1224.2] # GR mass_centers[4, :] = [33.0134, 0.6614, 0.0819, 0.9802, -1169.8] # RN mass_centers[5, :] = [08.2610, -0.4681, 0.0000, 0.9722, 1100.7] # VI mass_centers[6, :] = [35.1801, 1.2830, 0.1322, 0.9162, -0159.8] # WS mass_centers[7, :] = [52.4539, 2.3714, 1.1120, 0.9382, -1618.5] # MH mass_centers[8, :] = [44.2216, -0.3419, 0.0687, 0.9683, 1272.7] # IH/HDG mass_centers_dict.update({'X': mass_centers}) return mass_centers_dict def _data_limits_table(): """ Defines the data limits used in the standardization. Returns ------- dlimits_dict : dict A dictionary with the limits for each variable. """ dlimits_dict = dict() dlimits_dict.update({'Zh': (60., -10.)}) dlimits_dict.update({'ZDR': (5., -5.)}) dlimits_dict.update({'KDP': (7., -10.)}) dlimits_dict.update({'RhoHV': (-5.23, -50.)}) return dlimits_dict
[docs]def get_freq_band(freq): """ Returns the frequency band name (S, C, X, ...). Parameters ---------- freq : float Radar frequency [Hz]. Returns ------- freq_band : str Frequency band name. """ if freq >= 2e9 and freq < 4e9: return 'S' if freq >= 4e9 and freq < 8e9: return 'C' if freq >= 8e9 and freq <= 12e9: return 'X' warn('Unknown frequency band') return None