Source code for pyart.retrieve.echo_class

"""
Functions for echo classification.

"""

from warnings import warn

import numpy as np

from ..config import get_field_name, get_fillvalue, get_metadata
from ._echo_class import _feature_detection, steiner_class_buff


[docs] def steiner_conv_strat( grid, dx=None, dy=None, intense=42.0, work_level=3000.0, peak_relation="default", area_relation="medium", bkg_rad=11000.0, use_intense=True, fill_value=None, refl_field=None, ): """ Partition reflectivity into convective-stratiform using the Steiner et al. (1995) algorithm. Parameters ---------- grid : Grid Grid containing reflectivity field to partition. dx, dy : float, optional The x- and y-dimension resolutions in meters, respectively. If None the resolution is determined from the first two axes values. intense : float, optional The intensity value in dBZ. Grid points with a reflectivity value greater or equal to the intensity are automatically flagged as convective. See reference for more information. work_level : float, optional The working level (separation altitude) in meters. This is the height at which the partitioning will be done, and should minimize bright band contamination. See reference for more information. peak_relation : 'default' or 'sgp', optional The peakedness relation. See reference for more information. area_relation : 'small', 'medium', 'large', or 'sgp', optional The convective area relation. See reference for more information. bkg_rad : float, optional The background radius in meters. See reference for more information. use_intense : bool, optional True to use the intensity criteria. fill_value : float, optional Missing value used to signify bad data points. A value of None will use the default fill value as defined in the Py-ART configuration file. refl_field : str, optional Field in grid to use as the reflectivity during partitioning. None will use the default reflectivity field name from the Py-ART configuration file. Returns ------- eclass : dict Steiner convective-stratiform classification dictionary. References ---------- Steiner, M. R., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. J. Appl. Meteor., 34, 1978-2007. """ # Get fill value if fill_value is None: fill_value = get_fillvalue() # Parse field parameters if refl_field is None: refl_field = get_field_name("reflectivity") # parse dx and dy if dx is None: dx = grid.x["data"][1] - grid.x["data"][0] if dy is None: dy = grid.y["data"][1] - grid.y["data"][0] # Get coordinates x = grid.x["data"] y = grid.y["data"] z = grid.z["data"] # Get reflectivity data ze = np.ma.copy(grid.fields[refl_field]["data"]) ze = ze.filled(np.NaN) eclass = steiner_class_buff( ze, x, y, z, dx=dx, dy=dy, bkg_rad=bkg_rad, work_level=work_level, intense=intense, peak_relation=peak_relation, area_relation=area_relation, use_intense=use_intense, ) return { "data": eclass.astype(np.int32), "standard_name": "echo_classification", "long_name": "Steiner echo classification", "valid_min": 0, "valid_max": 2, "comment_1": ( "Convective-stratiform echo " "classification based on " "Steiner et al. (1995)" ), "comment_2": ("0 = Undefined, 1 = Stratiform, " "2 = Convective"), }
[docs] def conv_strat_yuter( grid, dx=None, dy=None, level_m=None, always_core_thres=42, bkg_rad_km=11, use_cosine=True, max_diff=5, zero_diff_cos_val=55, scalar_diff=1.5, use_addition=True, calc_thres=0.75, weak_echo_thres=5.0, min_dBZ_used=5.0, dB_averaging=True, remove_small_objects=True, min_km2_size=10, val_for_max_conv_rad=30, max_conv_rad_km=5.0, cs_core=3, nosfcecho=0, weakecho=3, sf=1, conv=2, refl_field=None, estimate_flag=True, estimate_offset=5, ): """ Partition reflectivity into convective-stratiform using the Yuter et al. (2005) and Yuter and Houze (1997) algorithm. Parameters ---------- grid : Grid Grid containing reflectivity field to partition. dx, dy : float, optional The x- and y-dimension resolutions in meters, respectively. If None the resolution is determined from the first two axes values parsed from grid object. level_m : float, optional Desired height in meters to classify with convective stratiform algorithm. always_core_thres : float, optional Threshold for points that are always convective. All values above the threshold are classifed as convective See Yuter et al. (2005) for more detail. bkg_rad_km : float, optional Radius to compute background reflectivity in kilometers. Default is 11 km. Recommended to be at least 3 x grid spacing use_cosine : bool, optional Boolean used to determine if a cosine scheme (see Yuter and Houze (1997)) should be used for identifying convective cores (True) or if a simpler scalar scheme (False) should be used. max_diff : float, optional Maximum difference between background average and reflectivity in order to be classified as convective. "a" value in Eqn. B1 in Yuter and Houze (1997) zero_diff_cos_val : float, optional Value where difference between background average and reflectivity is zero in the cosine function "b" value in Eqn. B1 in Yuter and Houze (1997) scalar_diff : float, optional If using a scalar difference scheme, this value is the multiplier or addition to the background average use_addition : bool, optional Determines if a multiplier (False) or addition (True) in the scalar difference scheme should be used calc_thres : float, optional Minimum percentage of points needed to be considered in background average calculation weak_echo_thres : float, optional Threshold for determining weak echo. All values below this threshold will be considered weak echo min_dBZ_used : float, optional Minimum dBZ value used for classification. All values below this threshold will be considered no surface echo See Yuter and Houze (1997) and Yuter et al. (2005) for more detail. dB_averaging : bool, optional True if using dBZ reflectivity values that need to be converted to linear Z before averaging. False for other non-dBZ values (i.e. snow rate) remove_small_objects : bool, optional Determines if small objects should be removed from convective core array. Default is True. min_km2_size : float, optional Minimum size of convective cores to be considered. Cores less than this size will be removed. Default is 10 km^2. val_for_max_conv_rad : float, optional dBZ for maximum convective radius. Convective cores with values above this will have the maximum convective radius max_conv_rad_km : float, optional Maximum radius around convective cores to classify as convective. Default is 5 km cs_core : int, optional Value for points classified as convective cores nosfcecho : int, optional Value for points classified as no surface echo, based on min_dBZ_used weakecho : int, optional Value for points classified as weak echo, based on weak_echo_thres sf : int, optional Value for points classified as stratiform conv : int, optional Value for points classified as convective refl_field : str, optional Field in grid to use as the reflectivity during partitioning. None will use the default reflectivity field name from the Py-ART configuration file. estimate_flag : bool, optional Determines if over/underestimation should be applied. If true, the algorithm will also be run on the same field wih the estimate_offset added and the same field with the estimate_offset subtracted. Default is True (recommended) estimate_offset : float, optional Value used to offset the reflectivity values by for the over/underestimation application. Default value is 5 dBZ. Returns ------- convsf_dict : dict Convective-stratiform classification dictionary. References ---------- Yuter, S. E., and R. A. Houze, Jr., 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for Z-R relations. J. Appl. Meteor., 36, 847-867. https://doi.org/10.1175/1520-0450(1997)036%3C0847:MORSDO%3E2.0.CO;2 Yuter, S. E., R. A. Houze, Jr., E. A. Smith, T. T. Wilheit, and E. Zipser, 2005: Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., 44, 385-415. https://doi.org/10.1175/JAM2206.1 """ warn( "This function will be deprecated in Py-ART 2.0." " Please use feature_detection function.", DeprecationWarning, ) feature_dict = feature_detection( grid, dx=dx, dy=dy, level_m=level_m, always_core_thres=always_core_thres, bkg_rad_km=bkg_rad_km, use_cosine=use_cosine, max_diff=max_diff, zero_diff_cos_val=zero_diff_cos_val, scalar_diff=scalar_diff, use_addition=use_addition, calc_thres=calc_thres, weak_echo_thres=weak_echo_thres, min_val_used=min_dBZ_used, dB_averaging=dB_averaging, remove_small_objects=remove_small_objects, min_km2_size=min_km2_size, binary_close=False, val_for_max_rad=val_for_max_conv_rad, max_rad_km=max_conv_rad_km, core_val=cs_core, nosfcecho=nosfcecho, weakecho=weakecho, bkgd_val=sf, feat_val=conv, field=refl_field, estimate_flag=estimate_flag, estimate_offset=5, overest_field=None, underest_field=None, ) return feature_dict
[docs] def feature_detection( grid, dx=None, dy=None, level_m=None, always_core_thres=42, bkg_rad_km=11, use_cosine=True, max_diff=5, zero_diff_cos_val=55, scalar_diff=1.5, use_addition=True, calc_thres=0.75, weak_echo_thres=5.0, min_val_used=5.0, dB_averaging=True, remove_small_objects=True, min_km2_size=10, binary_close=False, val_for_max_rad=30, max_rad_km=5.0, core_val=3, nosfcecho=0, weakecho=3, bkgd_val=1, feat_val=2, field=None, estimate_flag=True, estimate_offset=5, overest_field=None, underest_field=None, ): """ This function can be used to detect features in a field (e.g. reflectivity, rain rate, snow rate, etc.) described by Tomkins et al. (2023) and based on original convective-stratiform algorithms developed by Steiner et al. (1995), Yuter et al. (2005) and Yuter and Houze (1997) algorithm. Author: Laura Tomkins (@lauratomkins) Parameters ---------- grid : Grid Grid containing reflectivity field to partition. dx, dy : float, optional The x- and y-dimension resolutions in meters, respectively. If None the resolution is determined from the first two axes values parsed from grid object. level_m : float, optional Desired height in meters to run feature detection algorithm. always_core_thres : float, optional Threshold for points that are always features. All values above the threshold are classified as features. bkg_rad_km : float, optional Radius to compute background reflectivity in kilometers. Default is 11 km. Recommended to be at least 3 x grid spacing use_cosine : bool, optional Boolean used to determine if a cosine scheme (see Yuter and Houze (1997)) should be used for identifying cores (True) or if a simpler scalar scheme (False) should be used. max_diff : float, optional Maximum difference between background average and reflectivity in order to be classified as features. "a" value in Eqn. B1 in Yuter and Houze (1997) zero_diff_cos_val : float, optional Value where difference between background average and reflectivity is zero in the cosine function "b" value in Eqn. B1 in Yuter and Houze (1997) scalar_diff : float, optional If using a scalar difference scheme, this value is the multiplier or addition to the background average use_addition : bool, optional Determines if a multiplier (False) or addition (True) in the scalar difference scheme should be used calc_thres : float, optional Minimum percentage of points needed to be considered in background average calculation weak_echo_thres : float, optional Threshold for determining weak echo. All values below this threshold will be considered weak echo min_val_used : float, optional Minimum value used for classification. All values below this threshold will be considered no surface echo See Yuter and Houze (1997) and Yuter et al. (2005) for more detail. Units based on input field dB_averaging : bool, optional True if using dBZ reflectivity values that need to be converted to linear Z before averaging. False for other non-dBZ values (i.e. snow rate) remove_small_objects : bool, optional Determines if small objects should be removed from core array. Default is True. min_km2_size : float, optional Minimum size of Cores to be considered. Cores less than this size will be removed. Default is 10 km^2. binary_close : bool, optional Determines if a binary closing should be performed on the cores. Default is False. val_for_max_rad : float, optional value used for maximum radius. Cores with values above this will have the maximum radius incorporated. max_rad_km : float, optional Maximum radius around cores to classify as feature. Default is 5 km core_val : int, optional Value for points classified as cores nosfcecho : int, optional Value for points classified as no surface echo, based on min_val_used weakecho : int, optional Value for points classified as weak echo, based on weak_echo_thres. bkgd_val : int, optional Value for points classified as background echo. feat_val : int, optional Value for points classified as features. field : str, optional Field in grid to find objects in. None will use the default reflectivity field name from the Py-ART configuration file. estimate_flag : bool, optional Determines if over/underestimation should be applied. If true, the algorithm will also be run on the same field wih the estimate_offset added and the same field with the estimate_offset subtracted. Default is True (recommended) estimate_offset : float, optional Value used to offset the field values by for the over/underestimation application. Default value is 5 dBZ. overest_field : str, optional Name of field in grid object used to calculate the overestimate if estimate_flag is True. underest_field : str, optional Name of field in grid object used to calculate the underestimate if estimate_flag is True. Returns ------- feature_dict : dict Feature detection classification dictionary. References ---------- Steiner, M. R., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. J. Appl. Meteor., 34, 1978-2007. Yuter, S. E., and R. A. Houze, Jr., 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for Z-R relations. J. Appl. Meteor., 36, 847-867. https://doi.org/10.1175/1520-0450(1997)036%3C0847:MORSDO%3E2.0.CO;2 Yuter, S. E., R. A. Houze, Jr., E. A. Smith, T. T. Wilheit, and E. Zipser, 2005: Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., 44, 385-415. https://doi.org/10.1175/JAM2206.1 Tomkins, L. M., S. E. Yuter, and M. A. Miller, 2024: Objective identification of faint and strong features in radar observations of winter storms. in prep. """ # Maxmimum radius must be less than 5 km if max_rad_km > 5: print("Max radius must be less than 5 km, exiting") raise # Parse field parameters if field is None: field = get_field_name("reflectivity") dB_averaging = True # parse dx and dy if None if dx is None: dx = grid.x["data"][1] - grid.x["data"][0] if dy is None: dy = grid.y["data"][1] - grid.y["data"][0] # add catch for background radius size if bkg_rad_km * 1000 < 2 * dx or bkg_rad_km * 1000 < 2 * dy: print( "Background radius for averaging must be at least 2 times dx and dy, exiting" ) raise # Get coordinates z = grid.z["data"] # Get reflectivity data at desired level if level_m is None: try: ze = np.ma.copy(grid.fields[field]["data"][0, :, :]) except: ze = np.ma.copy(grid.fields[field]["data"][:, :]) else: zslice = np.argmin(np.abs(z - level_m)) ze = np.ma.copy(grid.fields[field]["data"][zslice, :, :]) # run feature detection algorithm _, _, feature_best = _feature_detection( ze, dx, dy, always_core_thres=always_core_thres, bkg_rad_km=bkg_rad_km, use_cosine=use_cosine, max_diff=max_diff, zero_diff_cos_val=zero_diff_cos_val, scalar_diff=scalar_diff, use_addition=use_addition, calc_thres=calc_thres, weak_echo_thres=weak_echo_thres, min_val_used=min_val_used, dB_averaging=dB_averaging, remove_small_objects=remove_small_objects, min_km2_size=min_km2_size, binary_close=binary_close, val_for_max_rad=val_for_max_rad, max_rad_km=max_rad_km, core_val=core_val, nosfcecho=nosfcecho, weakecho=weakecho, bkgd_val=bkgd_val, feat_val=feat_val, ) # put data into a dictionary to be added as a field feature_dict = { "feature_detection": { "data": feature_best[None, :, :], "standard_name": "feature_detection", "long_name": "Feature Detection", "valid_min": 0, "valid_max": 3, "comment_1": ( "{} = No surface echo/Undefined, {} = Background echo, {} = Features, {} = weak echo".format( nosfcecho, bkgd_val, feat_val, weakecho ) ), } } # If estimation is True, run the algorithm on the field with offset subtracted and the field with the offset added if estimate_flag: # get underestimate field if underest_field is None: under_field = ze - estimate_offset elif underest_field is not None: under_field = np.ma.copy(grid.fields[underest_field]["data"][0, :, :]) # run algorithm to get feature detection underestimate _, _, feature_under = _feature_detection( under_field, dx, dy, always_core_thres=always_core_thres, bkg_rad_km=bkg_rad_km, use_cosine=use_cosine, max_diff=max_diff, zero_diff_cos_val=zero_diff_cos_val, scalar_diff=scalar_diff, use_addition=use_addition, calc_thres=calc_thres, weak_echo_thres=weak_echo_thres, min_val_used=min_val_used, dB_averaging=dB_averaging, remove_small_objects=remove_small_objects, min_km2_size=min_km2_size, binary_close=binary_close, val_for_max_rad=val_for_max_rad, max_rad_km=max_rad_km, core_val=core_val, nosfcecho=nosfcecho, weakecho=weakecho, bkgd_val=bkgd_val, feat_val=feat_val, ) # get overestimate field if overest_field is None: over_field = ze + estimate_offset elif overest_field is not None: over_field = np.ma.copy(grid.fields[overest_field]["data"][0, :, :]) # run algorithm to get feature detection underestimate _, _, feature_over = _feature_detection( over_field, dx, dy, always_core_thres=always_core_thres, bkg_rad_km=bkg_rad_km, use_cosine=use_cosine, max_diff=max_diff, zero_diff_cos_val=zero_diff_cos_val, scalar_diff=scalar_diff, use_addition=use_addition, calc_thres=calc_thres, weak_echo_thres=weak_echo_thres, min_val_used=min_val_used, dB_averaging=dB_averaging, remove_small_objects=remove_small_objects, min_km2_size=min_km2_size, binary_close=binary_close, val_for_max_rad=val_for_max_rad, max_rad_km=max_rad_km, core_val=core_val, nosfcecho=nosfcecho, weakecho=weakecho, bkgd_val=bkgd_val, feat_val=feat_val, ) # save into dictionaries feature_dict["feature_under"] = { "data": feature_under[None, :, :], "standard_name": "feature_detection_under", "long_name": "Feature Detection Underestimate", "valid_min": 0, "valid_max": 3, "comment_1": ( "{} = No surface echo/Undefined, {} = Background echo, {} = Features, {} = weak echo".format( nosfcecho, bkgd_val, feat_val, weakecho ) ), } feature_dict["feature_over"] = { "data": feature_over[None, :, :], "standard_name": "feature_detection_over", "long_name": "Feature Detection Overestimate", "valid_min": 0, "valid_max": 3, "comment_1": ( "{} = No surface echo/Undefined, {} = Background echo, {} = Features, {} = weak echo".format( nosfcecho, bkgd_val, feat_val, weakecho ) ), } return feature_dict
[docs] def hydroclass_semisupervised( radar, mass_centers=None, weights=np.array([1.0, 1.0, 1.0, 0.75, 0.5]), refl_field=None, zdr_field=None, rhv_field=None, kdp_field=None, temp_field=None, hydro_field=None, ): """ Classifies precipitation echoes following the approach by Besic et al (2016). Parameters ---------- radar : radar Radar object. mass_centers : ndarray 2D, optional The centroids for each variable and hydrometeor class in (nclasses, nvariables). weights : ndarray 1D, optional The weight given to each variable. refl_field, zdr_field, rhv_field, kdp_field, temp_field : str, optional Inputs. Field names within the radar object which represent the horizonal reflectivity, the differential reflectivity, the copolar correlation coefficient, the specific differential phase and the temperature field. A value of None for any of these parameters will use the default field name as defined in the Py-ART configuration file. hydro_field : str, optional Output. Field name which represents the hydrometeor class field. A value of None will use the default field name as defined in the Py-ART configuration file. Returns ------- hydro : dict Hydrometeor classification field. References ---------- Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425-4445, doi:10.5194/amt-9-4425-2016, 2016 """ lapse_rate = -6.5 # select the centroids as a function of frequency band if mass_centers is None: # assign coefficients according to radar frequency if radar.instrument_parameters is not None: if "frequency" in radar.instrument_parameters: mass_centers = _get_mass_centers( radar.instrument_parameters["frequency"]["data"][0] ) else: mass_centers = _mass_centers_table()["C"] warn( "Radar frequency unknown. " "Default coefficients for C band will be applied." ) else: mass_centers = _mass_centers_table()["C"] warn( "Radar instrument parameters is empty. So frequency is " "unknown. Default coefficients for C band will be applied." ) # parse the field parameters if refl_field is None: refl_field = get_field_name("reflectivity") if zdr_field is None: zdr_field = get_field_name("differential_reflectivity") if rhv_field is None: rhv_field = get_field_name("cross_correlation_ratio") if kdp_field is None: kdp_field = get_field_name("specific_differential_phase") if temp_field is None: temp_field = get_field_name("temperature") if hydro_field is None: hydro_field = get_field_name("radar_echo_classification") # extract fields and parameters from radar radar.check_field_exists(refl_field) radar.check_field_exists(zdr_field) radar.check_field_exists(rhv_field) radar.check_field_exists(kdp_field) radar.check_field_exists(temp_field) refl = radar.fields[refl_field]["data"] zdr = radar.fields[zdr_field]["data"] rhohv = radar.fields[rhv_field]["data"] kdp = radar.fields[kdp_field]["data"] temp = radar.fields[temp_field]["data"] # convert temp in relative height respect to iso0 relh = temp * (1000.0 / lapse_rate) # standardize data refl_std = _standardize(refl, "Zh") zdr_std = _standardize(zdr, "ZDR") kdp_std = _standardize(kdp, "KDP") rhohv_std = _standardize(rhohv, "RhoHV") relh_std = _standardize(relh, "relH") # standardize centroids mc_std = np.zeros(np.shape(mass_centers)) mc_std[:, 0] = _standardize(mass_centers[:, 0], "Zh") mc_std[:, 1] = _standardize(mass_centers[:, 1], "ZDR") mc_std[:, 2] = _standardize(mass_centers[:, 2], "KDP") mc_std[:, 3] = _standardize(mass_centers[:, 3], "RhoHV") mc_std[:, 4] = _standardize(mass_centers[:, 4], "relH") # assign to class hydroclass_data, min_dist = _assign_to_class( refl_std, zdr_std, kdp_std, rhohv_std, relh_std, mc_std, weights=weights ) # prepare output fields hydro = get_metadata(hydro_field) hydro["data"] = hydroclass_data return hydro
def _standardize(data, field_name, mx=None, mn=None): """ Streches the radar data to -1 to 1 interval. Parameters ---------- data : array Radar field. field_name : str Type of field (relH, Zh, ZDR, KDP or RhoHV). mx, mn : floats or None, optional Data limits for array values. Returns ------- field_std : dict Standardized radar data. """ if field_name == "relH": field_std = 2.0 / (1.0 + np.ma.exp(-0.005 * data)) - 1.0 return field_std if (mx is None) or (mn is None): dlimits_dict = _data_limits_table() if field_name not in dlimits_dict: raise ValueError( "Field " + field_name + " unknown. " + "Valid field names for standardizing are: " + "relH, Zh, ZDR, KDP and RhoHV" ) mx, mn = dlimits_dict[field_name] if field_name == "KDP": data[data < -0.5] = -0.5 data = 10.0 * np.ma.log10(data + 0.6) elif field_name == "RhoHV": data = 10.0 * np.ma.log10(1.0 - data) mask = np.ma.getmaskarray(data) field_std = 2.0 * (data - mn) / (mx - mn) - 1.0 field_std[data < mn] = -1.0 field_std[data > mx] = 1.0 field_std[mask] = np.ma.masked return field_std def _assign_to_class( zh, zdr, kdp, rhohv, relh, mass_centers, weights=np.array([1.0, 1.0, 1.0, 0.75, 0.5]), ): """ Assigns an hydrometeor class to a radar range bin computing the distance between the radar variables an a centroid. Parameters ---------- zh, zdr, kdp, rhohv, relh : radar fields Variables used for assignment normalized to [-1, 1] values. mass_centers : matrix Centroids normalized to [-1, 1] values. weights : array, optional The weight given to each variable. Returns ------- hydroclass : int array The index corresponding to the assigned class. mind_dist : float array The minimum distance to the centroids. """ # prepare data nrays = zh.shape[0] nbins = zdr.shape[1] nclasses = mass_centers.shape[0] nvariables = mass_centers.shape[1] data = np.ma.array([zh, zdr, kdp, rhohv, relh]) weights_mat = np.broadcast_to( weights.reshape(nvariables, 1, 1), (nvariables, nrays, nbins) ) dist = np.ma.zeros((nclasses, nrays, nbins), dtype="float64") # compute distance: masked entries will not contribute to the distance for i in range(nclasses): centroids_class = mass_centers[i, :] centroids_class = np.broadcast_to( centroids_class.reshape(nvariables, 1, 1), (nvariables, nrays, nbins) ) dist[i, :, :] = np.ma.sqrt( np.ma.sum(((centroids_class - data) ** 2.0) * weights_mat, axis=0) ) # use very large fill_value so that masked entries will be sorted at the # end. There should not be any masked entry anyway class_vec = dist.argsort(axis=0, fill_value=10e40) # get minimum distance. Acts as a confidence value dist.sort(axis=0, fill_value=10e40) min_dist = dist[0, :, :] # Entries with non-valid reflectivity values are set to 0 (No class) mask = np.ma.getmaskarray(zh) hydroclass = class_vec[0, :, :] + 1 hydroclass[mask] = 0 return hydroclass, min_dist def _get_mass_centers(freq): """ Get mass centers for a particular frequency. Parameters ---------- freq : float Radar frequency [Hz]. Returns ------- mass_centers : ndarray 2D The centroids for each variable and hydrometeor class in (nclasses, nvariables). """ mass_centers_dict = _mass_centers_table() freq_band = get_freq_band(freq) if (freq_band is not None) and (freq_band in mass_centers_dict): return mass_centers_dict[freq_band] if freq < 4e9: freq_band_aux = "C" elif freq > 12e9: freq_band_aux = "X" mass_centers = mass_centers_dict[freq_band_aux] warn( "Radar frequency out of range. " + "Centroids only valid for C or X band. " + freq_band_aux + " band centroids will be applied" ) return mass_centers def _mass_centers_table(): """ Defines the mass centers look up table for each frequency band. Returns ------- mass_centers_dict : dict A dictionary with the mass centers for each frequency band. """ nclasses = 9 nvariables = 5 mass_centers_c = np.zeros((nclasses, nvariables)) mass_centers_x = np.zeros((nclasses, nvariables)) mass_centers_dict = dict() # C-band centroids derived for MeteoSwiss Albis radar # Zh ZDR kdp RhoHV delta_Z mass_centers_c[0, :] = [13.5829, 0.4063, 0.0497, 0.9868, 1330.3] # DS mass_centers_c[1, :] = [02.8453, 0.2457, 0.0000, 0.9798, 0653.8] # CR mass_centers_c[2, :] = [07.6597, 0.2180, 0.0019, 0.9799, -1426.5] # LR mass_centers_c[3, :] = [31.6815, 0.3926, 0.0828, 0.9978, 0535.3] # GR mass_centers_c[4, :] = [39.4703, 1.0734, 0.4919, 0.9876, -1036.3] # RN mass_centers_c[5, :] = [04.8267, -0.5690, 0.0000, 0.9691, 0869.8] # VI mass_centers_c[6, :] = [30.8613, 0.9819, 0.1998, 0.9845, -0066.1] # WS mass_centers_c[7, :] = [52.3969, 2.1094, 2.4675, 0.9730, -1550.2] # MH mass_centers_c[8, :] = [50.6186, -0.0649, 0.0946, 0.9904, 1179.9] # IH/HDG mass_centers_dict.update({"C": mass_centers_c}) # X-band centroids derived for MeteoSwiss DX50 radar # Zh ZDR kdp RhoHV delta_Z mass_centers_x[0, :] = [19.0770, 0.4139, 0.0099, 0.9841, 1061.7] # DS mass_centers_x[1, :] = [03.9877, 0.5040, 0.0000, 0.9642, 0856.6] # CR mass_centers_x[2, :] = [20.7982, 0.3177, 0.0004, 0.9858, -1375.1] # LR mass_centers_x[3, :] = [34.7124, -0.3748, 0.0988, 0.9828, 1224.2] # GR mass_centers_x[4, :] = [33.0134, 0.6614, 0.0819, 0.9802, -1169.8] # RN mass_centers_x[5, :] = [08.2610, -0.4681, 0.0000, 0.9722, 1100.7] # VI mass_centers_x[6, :] = [35.1801, 1.2830, 0.1322, 0.9162, -0159.8] # WS mass_centers_x[7, :] = [52.4539, 2.3714, 1.1120, 0.9382, -1618.5] # MH mass_centers_x[8, :] = [44.2216, -0.3419, 0.0687, 0.9683, 1272.7] # IH/HDG mass_centers_dict.update({"X": mass_centers_x}) return mass_centers_dict def _data_limits_table(): """ Defines the data limits used in the standardization. Returns ------- dlimits_dict : dict A dictionary with the limits for each variable. """ dlimits_dict = dict() dlimits_dict.update({"Zh": (60.0, -10.0)}) dlimits_dict.update({"ZDR": (5.0, -5.0)}) dlimits_dict.update({"KDP": (7.0, -10.0)}) dlimits_dict.update({"RhoHV": (-5.23, -50.0)}) return dlimits_dict
[docs] def get_freq_band(freq): """ Returns the frequency band name (S, C, X, ...). Parameters ---------- freq : float Radar frequency [Hz]. Returns ------- freq_band : str Frequency band name. """ if freq >= 2e9 and freq < 4e9: return "S" if freq >= 4e9 and freq < 8e9: return "C" if freq >= 8e9 and freq <= 12e9: return "X" warn("Unknown frequency band") return None