Source code for act.discovery.airnow

import pandas as pd
import numpy as np
import xarray as xr


[docs]def get_airnow_forecast(token, date, zipcode=None, latlon=None, distance=25): """ This tool will get current or historical AQI values and categories for a reporting area by either Zip code or Lat/Lon coordinate. https://docs.airnowapi.org/ Parameters ---------- token : str The access token for accesing the AirNowAPI web server date : str The date of the data to be acquired. Format is YYYY-MM-DD zipcode : str The zipcode of the location for the data request. If zipcode is not defined then a latlon coordinate must be defined. latlon : array The latlon coordinate of the loaction for the data request. If latlon is not defined then a zipcode must be defined. distance : int If no reporting are is associated with the specified zipcode or latlon, return a forcast from a nearby reporting area with this distance (in miles). Default is 25 miles Returns ------- ds : xarray.Dataset Returns an Xarray dataset object Example ------- act.discovery.get_AirNow_forecast(token='XXXXXX', zipcode='60440', date='2012-05-31') """ # default beginning of the query url query_url = 'https://www.airnowapi.org/aq/forecast/' # checking is either a zipcode or latlon coordinate is defined # if neither is defined then error is raised if (zipcode is None) and (latlon is None): raise NameError("Zipcode or latlon must be defined") if zipcode: url = query_url + ( 'zipCode/?' + 'format=text/csv' + '&zipCode=' + str(zipcode) + '&date=' + str(date) + '&distance=' + str(distance) + '&API_KEY=' + str(token) ) if latlon: url = query_url + ( 'latLong/?' + 'format=text/csv' + '&latitude=' + str(latlon[0]) + '&longitude=' + str(latlon[1]) + '&date=' + str(date) + '&distance=' + str(distance) + '&API_KEY=' + str(token) ) df = pd.read_csv(url) # converting to xarray dataset object ds = df.to_xarray() return ds
[docs]def get_airnow_obs(token, date=None, zipcode=None, latlon=None, distance=25): """ This tool will get current or historical observed AQI values and categories for a reporting area by either Zip code or Lat/Lon coordinate. https://docs.airnowapi.org/ Parameters ---------- token : str The access token for accesing the AirNowAPI web server date : str The date of the data to be acquired. Format is YYYY-MM-DD Default is None which will pull most recent observations zipcode : str The zipcode of the location for the data request. If zipcode is not defined then a latlon coordinate must be defined. latlon : array The latlon coordinate of the loaction for the data request. If latlon is not defined then a zipcode must be defined. distance : int If no reporting are is associated with the specified zipcode or latlon, return a forcast from a nearby reporting area with this distance (in miles). Default is 25 miles Returns ------- ds : xarray.Dataset Returns an xarray dataset object Example ------- act.discovery.get_AirNow_obs(token='XXXXXX', date='2021-12-01', zipcode='60440') act.discovery.get_AirNow_obs(token='XXXXXX', latlon=[45,-87]) """ # default beginning of the query url query_url = 'https://www.airnowapi.org/aq/observation/' # checking is either a zipcode or latlon coordinate is defined # if neither is defined then error is raised if (zipcode is None) and (latlon is None): raise NameError("Zipcode or latlon must be defined") # setting the observation type to either current or historical based on the date if date is None: obs_type = 'current' if zipcode: url = query_url + ( 'zipCode/' + str(obs_type) + '/?' + 'format=text/csv' + '&zipCode=' + str(zipcode) + '&distance=' + str(distance) + '&API_KEY=' + str(token) ) if latlon: url = query_url + ( 'latLong/' + str(obs_type) + '/?' + 'format=text/csv' + '&latitude=' + str(latlon[0]) + '&longitude=' + str(latlon[1]) + '&distance=' + str(distance) + '&API_KEY=' + str(token) ) else: obs_type = 'historical' if zipcode: url = query_url + ( 'zipCode/' + str(obs_type) + '/?' + 'format=text/csv' + '&zipCode=' + str(zipcode) + '&date=' + str(date) + 'T00-0000&distance=' + str(distance) + '&API_KEY=' + str(token) ) if latlon: url = query_url + ( 'latLong/' + str(obs_type) + '/?' + 'format=text/csv' + '&latitude=' + str(latlon[0]) + '&longitude=' + str(latlon[1]) + '&date=' + str(date) + 'T00-0000&distance=' + str(distance) + '&API_KEY=' + str(token) ) df = pd.read_csv(url) # converting to xarray ds = df.to_xarray() return ds
[docs]def get_airnow_bounded_obs( token, start_date, end_date, latlon_bnds, parameters='OZONE,PM25', data_type='B', mon_type=0 ): """ Get AQI values or data concentrations for a specific date and time range and set of parameters within a geographic area of intrest https://docs.airnowapi.org/ Parameters ---------- token : str The access token for accesing the AirNowAPI web server start_date : str The start date and hour (in UTC) of the data request. Format is YYYY-MM-DDTHH end_date : str The end date and hour (in UTC) of the data request. Format is YYYY-MM-DDTHH latlon_bnds : str Lat/Lon bounding box of the area of intrest. Format is 'minX,minY,maxX,maxY' parameters : str Parameters to return data for. Options are: Ozone, PM25, PM10, CO, NO2, SO2 Format is 'PM25,PM10' mon_type : int The type of monitor to be returned. Default is 0 0-Permanent, 1-Mobile onlt, 2-Permanent & Mobile data_type : char The type of data to be returned. A-AQI, C-Concentrations, B-AQI & Concentrations Returns ------- ds : xarray.Dataset Returns an xarray dataset object """ verbose = 1 inc_raw_con = 1 url = ( 'https://www.airnowapi.org/aq/data/?startDate=' + str(start_date) + '&endDate=' + str(end_date) + '&parameters=' + str(parameters) + '&BBOX=' + str(latlon_bnds) + '&dataType=' + str(data_type) + '&format=text/csv' + '&verbose=' + str(verbose) + '&monitorType=' + str(mon_type) + '&includerawconcentrations=' + str(inc_raw_con) + '&API_KEY=' + str(token) ) # Set Column names names = [ 'latitude', 'longitude', 'time', 'parameter', 'concentration', 'unit', 'raw_concentration', 'AQI', 'category', 'site_name', 'site_agency', 'aqs_id', 'full_aqs_id', ] # Read data into CSV df = pd.read_csv(url, names=names) # Each line is a different time or site or variable so need to parse out sites = df['site_name'].unique() times = df['time'].unique() variables = list(df['parameter'].unique()) + ['AQI', 'category', 'raw_concentration'] latitude = [list(df['latitude'].loc[df['site_name'] == s])[0] for s in sites] longitude = [list(df['longitude'].loc[df['site_name'] == s])[0] for s in sites] aqs_id = [list(df['aqs_id'].loc[df['site_name'] == s])[0] for s in sites] # Set up the dataset ahead of time ds = xr.Dataset( data_vars={ 'latitude': (['sites'], latitude), 'longitude': (['sites'], longitude), 'aqs_id': (['sites'], aqs_id), }, coords={'time': (['time'], times), 'sites': (['sites'], sites)}, ) # Set up emtpy data with nans data = np.empty((len(variables), len(times), len(sites))) data[:] = np.nan # For each variable, pull out the data from specific sites and times for v in range(len(variables)): for t in range(len(times)): for s in range(len(sites)): if variables[v] in ['AQI', 'category', 'raw_concentration']: result = df.loc[(df['time'] == times[t]) & (df['site_name'] == sites[s])] if len(result[variables[v]]) > 0: data[v, t, s] = list(result[variables[v]])[0] atts = {'units': ''} else: result = df.loc[ (df['time'] == times[t]) & (df['site_name'] == sites[s]) & (df['parameter'] == variables[v]) ] if len(result['concentration']) > 0: data[v, t, s] = list(result['concentration'])[0] atts = {'units': list(result['unit'])[0]} # Add variables to the dataset ds[variables[v]] = xr.DataArray(data=data[v, :, :], dims=['time', 'sites'], attrs=atts) times = pd.to_datetime(times) ds = ds.assign_coords({'time': times}) return ds