act.plotting.SkewTDisplay.plot_enhanced_skewt#
- SkewTDisplay.plot_enhanced_skewt(spd_name='wspd', dir_name='deg', temp_name='tdry', td_name='dp', p_name='pres', overwrite_data=None, add_data=None, color_field=None, component_range=80, uv_flag=False, dsname=None, figsize=(14, 10), layout='constrained')[source]#
This will plot an enhanced Skew-T plot with a Hodograph on the top right and the stability parameters on the lower right. This will create a new figure so that one does not need to be defined through subplot_shape.
Requires Matplotlib v 3.7 and higher
- Parameters:
spd_name (str) – The name of the field corresponding to the wind speed.
dir_name (str) – The name of the field corresponding to the wind direction in degrees from North.
temp_name (str) – The name of the temperature field.
td_name (str) – The name of the dewpoint field.
p_name (str) – The name of the pressure field.
overwrite_data (dict) – A disctionary of variables/values to write out instead of the ones calculated by MetPy. Needs to be of the form .. code-block:: python
overwrite_data={‘LCL’: 234, ‘CAPE’: 25} …
add_data (dict) – A dictionary of variables and values to write out in addition to the MetPy calculated ones
color_field (str, optional) – The name of the field if wanting to shade by another variable
component_range (int) – Range of the hodograph. Default is 80
uv_flag (boolean) – If set to True, spd_field and dir_field will be treated as the U and V wind variable names
dsname (str) – Name of the datastream to plot if multiple in the plot object
figsize (tuple) – Figure size for the plot
layout (str) – String to pass to matplotlib.figure.Figure object layout keyword argument. Choice of ‘constrained,’ ‘compressed,’ ‘tight,’ or None. Default is ‘constrained’.
- Returns:
self.axes (matplotlib axes)